
Graphics Processing Units

Prof. Zeke Wang

Zhejiang University

July 2024

2

Where Are We?

The von Neumann Model

3

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,

Disk…

OUTPUT

Monitor,

Printer,

Disk…

von Neumann Model: Two Key Properties

◼ Von Neumann model is also called stored program computer
(instructions in memory).

◼ von Neumann Model has two key properties:

❑ 1，Stored program
◼ Instructions stored in a linear memory array

◼ Memory is unified between instructions and data

❑ The interpretation of a stored value depends on the control signals

❑ 2，Sequential instruction processing
◼ One instruction processed (fetched, executed, completed) at a time

◼ Program counter (instruction pointer) identifies the current instruction

◼ Program counter is advanced sequentially except for control transfer
instructions

4

5

Where Are We?

A Single-Cycle Microarchitecture

A Closer Look

Single-cycle Machine

7

ASSequential
Logic
(State)

Combinational
Logic

AS’

AS: Architectural State

A Very Basic Instruction Processing Engine

◼ Each instruction takes a single clock cycle to execute.

◼ Only combinational logic is used to implement instruction
execution.

❑ No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state

at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state

at the end of a clock cycle

8

Multi-Cycle Microarchitectures

9

10

Where Are We?

Multi-Cycle Microarchitectures

◼ Goal: Let each instruction take (close to) only as much time
it really needs

◼ Idea of multi-cycle CPU:

❑ Decrease clock cycle time

❑ Each instruction takes as many clock cycles as it needs to take

◼ Multiple state transitions per instruction

◼ The states followed by each instruction is different

11

The “Process Instruction” Step of Multi-Cycle CPU

◼ ISA specifies abstractly what AS’ should be, given an
instruction and AS

❑ It defines an abstract finite state machine where

◼ State = programmer-visible state

◼ Next-state logic = instruction execution specification

❑ From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution

◼ One state transition per instruction

◼ Microarchitecture implements how AS is transformed to AS’

❑ We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

◼ Single-cycle: AS → AS’ (transform AS to AS’ in a single clock cycle)

◼ Multi-cycle: AS → AS+MS1 → AS+MS2 → AS+MS3 → AS’ (take

multiple clock cycles to transform AS to AS’)

12

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state

at the end of a clock cycle

13

14

Where Are We?

Can We Use the Idle Hardware to Improve Concurrency?

◼ Goal: More concurrency → Higher instruction throughput

(i.e., more “work” completed in one cycle)

◼ Key Idea: When an instruction is using some resources in
its processing phase, process other instructions on idle
resources not needed by that instruction

❑ E.g., when an instruction is being decoded, fetch the next
instruction

❑ E.g., when an instruction is being executed, decode another
instruction

❑ E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

❑ E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

15

Pipelining: Basic Idea

◼ More systematically:

❑ Pipeline the execution of multiple instructions

❑ Analogy: “Assembly line processing” of instructions

◼ Idea of pipelining:

❑ Divide the instruction processing cycle into distinct “stages” of
processing

❑ Ensure enough hardware resources to process one instruction in
each stage

❑ Process a different instruction in each stage

◼ Instructions consecutive in program order are processed in
consecutive stages

◼ Benefit: Increases instruction processing throughput (1/CPI)

16

The Laundry Analogy: Pipeline

◼ “place one dirty load of clothes in the washer”,

◼ “when the washer is finished, place the wet load in the dryer”,

◼ “when the dryer is finished, take out the dry load and fold”,

◼ “when folding is finished, put the clothes away”.

17

 Observations:
 1, steps to do a load are sequentially dependent,

 2, different steps do not share resources,

 3, no dependence between different loads.

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

18

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

- latency per load is the same

- throughput increased by 4X

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Example: Execution of Four Independent ADDs

◼ Multi-cycle: 4 cycles per instruction

◼ Pipelined: 4 cycles per 4 instructions (steady state)

19

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

1 instruction completed per cycle

20

Where Are We?

Agenda for Today

◼ Why GPU?

◼ Hardware Execution Model

◼ Programming Model

❑ SISD vs. SIMD vs. SPMD

❑ GPU Programming Example

◼ Advance

❑ SIMT (Hardware) & Warp (Software)

21

Motivation of In-network Computing

Why GPU?

Need More Computing Power.

OpenAI: Compute Power Needed by NN Model

Model Model Size
Compute/iteration

(OPs)

VGG 19 114M ~19.6 B

“GPT-3” 175B ~250 T

One Forward Pass of Model:

0.00

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1,000,000.00

T
h

ro
u

g
h

p
u

t
(G

O
P

s
/
s
)

One-cycle CPU Pipeline CPU SIMD CPU GPU VGG19 GPT-3

◼ CPU:

❑ Few complex cores

❑ Larger cache for low memory
latency

❑ Large and slow memory

CPU vs GPU： Compute Perspective

24

◼ GPU:

❑ Lots of simple cores

❑ Small cache for low memory
latency

❑ Small and fast memory

State-of-the-art CPU GPU and FPGA

Cores
(Threads)

TFLOPS
Memory Size
(Bandwidth)

PCIe Network

CPU (AMD
Threadrippe
r 3995WX)

64 (128)
2.8 (FP32),
1.4 (FP64)

512GB
(80GB/s)

32.0GB/s
(PCIe 4.0 X16)

No

GPU (Nvidia
H100)

18432 (128K)

67 (FP32),
34 (FP64),

989 (FP32, Tensor),
1979 (FP16, Tensor)

80GB
(3350GB/s)

64.0GB/s
(PCIe 5.0 X16)

No

FPGA
(U280)

9,024
(25x18
MULs)

1.8 (FP32)
40GB

(460GB/s)
16.0GB/s

(PCIe 4.0 X8)
Yes

Relationship between CPU and GPU

26

PCI Bus

CPU GPU

Motivation of In-network Computing

More cores → More trouble

Challenge: How to manipulate them?

GPU Computing

◼ Key Idea:

❑ Computation is offloaded to the GPU

◼ Three steps:

❑ CPU-GPU data transfer (1)

❑ GPU kernel execution (2)

❑ GPU-CPU data transfer (3)

CPU

memory

CPU

cores
Matrix

GPU

memory

GPU

cores
Matrix

1

3

2

28

◼ CPU-GPU Co-processing:

❑ CPU: Sequential or modestly parallel sections

❑ GPU: Massively parallel sections

Serial Code (CPU):

. . .

. . .

Parallel Kernel (GPU):

KernelA<<<nBlk, nThr>>>(args);

Serial Code (CPU):

Parallel Kernel (GPU):

KernelB<<<nBlk, nThr>>>(args);

Programming Model: CPU and GPU

29

GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

◼ However, the programming is done using threads, NOT
SIMD instructions

◼ To understand this, let’s go back to our parallelizable code
example

◼ But, before that, let’s distinguish between

❑ Programming Model (Software)

 vs.

❑ Execution Model (Hardware)

30

Programming Model vs. Hardware Execution Model

◼ Programming Model： how the programmer expresses the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), …

◼ Hardware Execution Model： how the hardware executes the
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Discussion: Execution Model can be very different from
Programming Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)

31

GPU: Programming Model vs. Hardware Execution Model

32

Hardware Execution Model CUDA Programming Model

Streaming

 Multi-processor

GPU

CUDA core Thread

Thread block

Grid ...

Agenda for Today

◼ Where is GPU? & Key Message

◼ Hardware Execution Model

◼ Programming Model

❑ SISD vs. SIMD vs. SPMD

❑ GPU Programming Example

◼ Advance

❑ SIMT (Hardware) & Warp (Software)

33

A Many-core GPU

(Hardware Execution Model)

NVIDIA GeForce GTX 285

◼ NVIDIA-speak:

❑ 240 stream processors (CUDA cores)

❑ “SIMT execution”

◼ Generic speak:

❑ 30 cores

❑ 8 SIMD functional units per core

◼ NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 35

NVIDIA GeForce GTX 285 “core”(SM)

…

= instruction stream decode= SIMD functional unit, control

 shared across 8 units

= execution context storage = multiply-add

= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian 36

NVIDIA GeForce GTX 285 “core”

…
64 KB of storage

for thread contexts

(registers)

◼ Groups of 32 threads share instruction stream (each group is
a Warp)

◼ Up to 32 warps are simultaneously interleaved

◼ Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian 37

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

30 cores on the GTX 285: 30K threads

Slide credit: Kayvon Fatahalian 38

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

0

1000

2000

3000

4000

5000

6000

7000

8000

GTX 285
(2009)

GTX 480
(2010)

GTX 780
(2013)

GTX 980
(2014)

P100 (2016) V100 (2017) A100 (2020)

G
FL

O
P

S

#F
u

n
ct

io
n

al
 U

n
it

s

Functional units (stream processors)

GFLOPS

Evolution of NVIDIA GPUs: Compute

39

NVIDIA V100

◼ NVIDIA-speak:

❑ 5120 stream processors (CUDA cores)

❑ “SIMT execution”

◼ Generic speak:

❑ 80 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning

◼ NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

40

NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

41

NVIDIA A100

◼ NVIDIA-speak:

❑ 6912 stream processors (CUDA cores)

❑ “SIMT execution”

◼ Generic speak:

❑ 108 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ New floating point data type (TF32)

◼ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 42

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

43

NVIDIA H100

◼ NVIDIA-speak:

❑ 8448 stream processors (CUDA cores)

❑ “SIMT execution”

◼ Generic speak:

❑ 132 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ Support for transformer

◼ https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 44

NVIDIA H100 Block Diagram

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

45

GPU Trend: H100 vs. A100

46

FP8 FP16 FP32 FP64
Memory

bandwidth
Memory
capacity

H100 4000T 2000T 1000T 60T 3TB/s 80GB

A100 666T 666T 333T 20T 2TB/s 80GB

Compute power scales well.

GPU memory capacity does not scale well.

A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming
model)

❑ Each thread executes the same code but operates a
different piece of data

❑ Each thread has its own context (i.e., can be
treated/restarted/executed independently)

47

Agenda for Today

◼ Where is GPU? & Key Message

◼ Hardware Execution Model

◼ Programming Model

❑ SISD vs. SIMD vs. SPMD

❑ GPU Programming Example

◼ Advance

❑ SIMT (Hardware) & Warp (Software)

48

How Can You Exploit Parallelism Here?

49

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming options
to exploit instruction-level parallelism

present in this sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (SPMD)

Prog. Model 1: Sequential (SISD)

50

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code
◼ Can be executed on thee processors:

◼ 1, Pipelined processor

◼ 2, Out-of-order execution processor

❑ Independent instructions executed
when ready

❑ Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

❑ In other words, the loop is dynamically
unrolled by the hardware

◼ 3, Superscalar or VLIW processor

❑ Can fetch and execute multiple
instructions per cycle

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

51

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

VLD A → V1

VLD B → V2

VADD V1 + V2 → V3

VST V3 → C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

52

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Prog. Model 3: Multithreaded

53

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

This programming model (software) is called:

SPMD: Single Program Multiple Data

SPMD
◼ SPMD: Single procedure/program, multiple data

❑ This is a programming model rather than computer
organization

◼ Each processing element executes the same procedure, except on
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Key Idea of SPMD: multiple instruction streams execute the
same program

❑ Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware
54

Agenda for Today

◼ Where is GPU? & Key Message

◼ Hardware Execution Model

◼ Programming Model

❑ SISD vs. SIMD vs. SPMD

❑ GPU Programming Example

◼ Advance

❑ SIMT (Hardware) & Warp (Software)

55

CUDA/OpenCL Programming Model

◼ Single Program Multiple Data (SPMD), e.g., CUDA

❑ Bulk synchronous programming: Global (coarse-grain)
synchronization between kernels

◼ The device (typically GPU) executes CUDA kernels

❑ Grid

❑ Thread Block

◼ CUDA runtime schedules at granularity of thread block.

◼ A thread block is a programming abstraction that represents a
group of threads that can be executed in parallel.

◼ Within a block, shared memory, and synchronization.

❑ Thread

◼ A thread corresponds to an iteration.

56

GPU: Programming Model vs. Hardware Execution Model

57

Hardware Execution Model CUDA Programming Model

Streaming

 Multi-processor

GPU

CUDA core Thread

Thread block

Grid ...

CUDA: Memory Hierarchy

58

◼ Function prototypes

 float serialFunction(…);

 __global__ void kernel(…);

◼ main()

❑ 1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);

❑ 2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);

❑ 3) Execution configuration setup: #blocks and #threads

❑ 4) Kernel call – kernel<<<execution configuration>>>(args…);

❑ 5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …);

◼ Kernel – __global__ void kernel(type args,…)

❑ Automatic variables transparently assigned to registers

❑ Shared memory: __shared__

❑ Intra-block synchronization: __syncthreads();

R
e
p

e
a
t

a
s
 n

e
e
d

e
d

Traditional Program Structure in CUDA

59

Slide credit: Hwu & Kirk

CUDA Programming Language
◼ Memory allocation

cudaMalloc((void**)&d_in, #bytes);

◼ Memory copy

cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

◼ Kernel launch

kernel<<< #blocks, #threads >>>(args);

◼ Memory deallocation

cudaFree(d_in);

◼ Explicit synchronization

cudaDeviceSynchronize();

60

First GPU Example: Vector Addition (I)

◼ Key Idea: one GPU thread to each element-wise addition

61

First GPU Example: Vector Addition (II)

◼ A grid: the whole set of threads

◼ We need a way to assign threads to GPU cores

62

First GPU Example: Vector Addition (III)

◼ We group threads into blocks

Block 0 Block 1 Block 2 Block 3

63

blockIdx = 0 blockIdx = 1 blockIdx = 2 blockIdx = 3

threadIdx = 0 threadIdx = 1 threadIdx = 2 threadIdx = 2

blockDim = 4

GPU: Programming Model vs. Hardware Execution Model

64

Hardware Execution Model CUDA Programming Model

Streaming

 Multi-processor

GPU

CUDA core Thread

Thread block

Grid ...

Host Code Example: Vector Addition
void vecadd(float* A, float* B, float* C, int N) {

 //1, Allocate GPU memory
 float *A_d, *B_d, *C_d;
 cudaMalloc((void**) &A_d, N*sizeof(float));
 cudaMalloc((void**) &B_d, N*sizeof(float));
 cudaMalloc((void**) &C_d, N*sizeof(float));

 //2, Copy data to GPU memory
 cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);

 //3, Perform computation on GPU
 ...

 //4, Copy data from GPU memory
 cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);

 //5, Deallocate GPU memory
 cudaFree(A_d);
 cudaFree(B_d);
 cudaFree(C_d);
}

65Slide credit: Izzat El Hajj

const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;
vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

Kernel Code Example: Vector Addition

66
Slide credit: Izzat El Hajj

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

 int i = blockDim.x*blockIdx.x + threadIdx.x;

 C[i] = A[i] + B[i];

}

blockDim: block dimension

blockIdx: block index within a grid

threadIdx: thread index within a block

Boundary Conditions

◼ Question: What if the size of the input is not a multiple of
the number of threads per block?

❑ Solution: use the ceiling to launch extra threads then omit
the threads after the boundary

◼ Host code:

◼ Kernel code:

const unsigned int numBlocks = (N +numThreadsPerBlock – 1)/numThreadsPerBlock;

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

 int i = blockDim.x*blockIdx.x + threadIdx.x;

 if(i < N) {
 C[i] = A[i] + B[i];
 }
}

67

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

Sample GPU Program: Matrix Multiplication

68Slide credit: Hyesoon Kim

Indexing and Memory Access

◼ Images are 2D data structures

❑ height x width

❑ Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width

Image[0][1]

Image[1][2]

69

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Image Layout in Memory

◼ Row-major layout

◼ Image[j][i] = Image[j x width + i]

Image[0][1] = Image[0 x 8 + 1]

Image[1][2] = Image[1 x 8 + 2]

70

Stride = width

Indexing and Memory Access: 1D Grid

◼ One GPU thread per pixel

◼ Grid of Blocks of Threads
❑ gridDim.x, blockDim.x

❑ blockIdx.x, threadIdx.x

Block 0

Block 0

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

blockIdx.x

threadIdx.x

blockIdx.x * blockDim.x +

threadIdx.x

6 * 4 + 1 = 25

71

Agenda for Today

◼ Where is GPU? & Key Message

◼ Hardware Execution Model

◼ Programming Model

❑ SISD vs. SIMD vs. SPMD

❑ GPU Programming Example

◼ Advance

❑ SIMT (Hardware) & Warp (Software)

72

GPU: Programming Model vs. Hardware Execution Model

73

Hardware Execution Model CUDA Programming Model

Streaming

 Multi-processor

GPU

CUDA core Thread

Thread block

Grid ...

Wrap
SIMT

SIMT (Hardware) & Warp (Software)

◼ SIMT: Single Instruction Multiple Thread

❑ More precisely, SIMD (Single Instruction Multiple Data)

❑ Key Feature: 16 CUDA cores in a SM are executed in a lock step.

74

◼ Warp:

❑ A warp, a basic execution unit, consists of 32 consecutive threads

❑ A thread block is divided into warps for SIMT execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

Motivation of In-network Computing

Why SIMT and Warp?

Reduce GPU scheduling overhead

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

How to Form Warps?

76

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Iter. 32

Mapping Warps on a SIMT Hardware

◼ Warp:

❑ A thread block is divided into warps.

❑ A warp executes the same instruction on different data elements

◼ SIMT Pipeline:

❑ 16 CUDA cores are executed in a lock step to serve each warp.

77

Thread Warp 0
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar

Thread

0

Scalar

Thread

1

Scalar

Thread

2

Scalar

Thread

31

Common PC

SIMT Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

GPU Execution with Warps

78

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

◼ Assume: a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained

multithreading of warps.

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle

79

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

Motivation of In-network Computing

SIMT is not SIMD!

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
81

SIMT Code vs. SIMD Code

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU scalar code

CUDA code

Slide credit: Hyesoon Kim 82

// there are 25000 loops with SIMD=4
…
v_A = vec_load (A);
v_B = vec_load (B);
 v_C = vec_add(v_A, v_B);
Vec_store(v_C, C)
…
}

CPU vector code

Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know vector

length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp)
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD
hardware

83

Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

84

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD
pipeline to save area
on control logic

❑ Groups scalar threads
into warps

◼ Branch divergence
occurs when threads
inside warps branch to
different execution
paths

85

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

SIMD Utilization

◼ Intra-warp divergence

Compute(threadIdx.x);

if (threadIdx.x % 2 == 0){

 Do_this(threadIdx.x);

}

else{

 Do_that(threadIdx.x);

}

Compute

If

Else

86

Increasing SIMD Utilization

◼ Divergence-free execution

Compute(threadIdx.x);

if (threadIdx.x < 32){

 Do_this(threadIdx.x * 2);

}

else{

 Do_that((threadIdx.x%32)*2+1);

}

Compute

If

Else

87

Vector Reduction: Naïve Mapping (I)

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3it
e

ra
ti
o
n

s

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

88Slide credit: Hwu & Kirk

…

Vector Reduction: Naïve Mapping (II)

◼ Program with low SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {

 __syncthreads();

 if (t % (2*stride) == 0)

 partialSum[t] += partialSum[t + stride];

}

89

Divergence-Free Mapping (I)

◼ All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

it
e
ra

ti
o
n

s

90Slide credit: Hwu & Kirk

…

Divergence-Free Mapping (II)

◼ Program with high SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 0; stride >> 1){

 __syncthreads();

 if (t < stride)

 partialSum[t] += partialSum[t + stride];

}

91

GPU Memories

Memory in the GPU Architecture

93

…

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

L2 Cache

Global Memory

Registers

Shared
Memory

L1 Cache

Constant Cache

Registers

Shared
Memory

L1 Cache

Constant Cache

Registers

Shared
Memory

L1 Cache

Constant Cache

≈1 cycle

≈5 cycles

≈5 cycles

≈500 cycles

Slide credit: Izzat El Hajj

Memory in the GPU Architecture

94

…

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

L2 Cache

Global Memory

Registers

Shared
Memory

L1 Cache

Constant Cache

Registers

Shared
Memory

L1 Cache

Constant Cache

Registers

Shared
Memory

L1 Cache

Constant Cache

≈1 cycle

≈5 cycles

≈5 cycles

≈500 cycles

Slide credit: Izzat El Hajj

50 MB

80 GB

Direct copy

3 TB/s

◼ Example of data movement between GPU global memory
(DRAM) and GPU cores.

NVIDIA A100 Tensor Core GPU Architecture In-Depth

40
NVIDIA A100 Tensor Core GPU Architecture

A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy
instruction that bypasses L1 cache and register file (RF). Additionally, A100’s more efficient Tensor
Cores reduce shared memory (SMEM) loads.

Figure 15. A100 SM Data Movement Efficiency

New asynchronous barriers work together with the asynchronous copy instruction to enable

efficient data fetch pipelines, and A100 increases maximum SMEM allocation per SM 1.7x to

164 KB (vs 96 KB on V100). With these improvements A100 SMs continuously data stream

data to keep the L2 cache constantly utilized.

L2 Cache and DRAM Bandwidth improvements - The NVIDIA A100 GPU’s increased

number of SMs and more powerful Tensor Cores in turn increase the required data fetch rates

from DRAM and L2 cache. To feed the Tensor Cores, A100 implements a 5-site HBM2 memory

subsystem with bandwidth of 1555 GB/sec, over 1.7x faster than V100. A100 further provides

2.3x the L2 cache read bandwidth of V100.

Alongside the raw data bandwidth improvements, A100 improves data fetch efficiency and

reduces DRAM bandwidth demand with a 40 MB L2 cache that is almost 7x larger than that of

Tesla V100. To fully exploit the L2 capacity A100 includes improved cache management

controls. Optimized for neural network training and inferencing as well as general compute

workloads, the new controls ensure that data in the cache is used more efficiently by minimizing

writebacks to memory and keeping reused data in L2 to reduce redundant DRAM traffic.

NVIDIA V100 & A100 Memory Hierarchy

A100 feature:
Direct copy from L2
to scratchpad,
bypassing L1 and
register file.

95https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

CUDA Variable Type Qualifiers

◼ __device__ is optional when used with __shared__, or __constant__

◼ Recall cudaMalloc(…) allocates memory from the host

❑ Constant memory can also be allocated and initialized from the host

◼ Automatic variables without any qualifier reside in a register

❑ Except arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

int localArr[N]; global thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

96

Memory Hierarchy in CUDA Programs

97

Nvidia’s Success: Transparent Scalability

◼ Hardware is free to schedule thread blocks

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

ti
m

e

98

Slide credit: Hwu & Kirk

ti
m

e

Gen 1
Gen 2

The CUDA code stays the same and enjoys performance

improvement while GPU hardware evolves.

Key Messages:

◼ Programming model is the key success of Nvidia, rather
than the GPU itself.

◼ GPU has an order of magnitude higher memory bandwidth
and compute power than CPU.

◼ Offloading a task to GPU pays off only when the task has
enough compute intensity.

◼ AI task needs compute-intensive accelerators, e.g., GPU
and AI processor.

99

Recall: Comparison of Memories

100

SRAM

HBM

DRAM

SSD

DISK

Capacity

SRAM

HBM

DRAM

SSD

DISK

LatencyBandwidth

~10MB

~10GB

~100GB

~1TB

~10TB

~1ns

~100ns

~100ns

~1us

~1ms

~100GB/s

DISK

SSD

DRAM

HBM

SRAM

~10MB/s

~1GB/s

~10GB/s

~1TB/s

The DRAM Subsystem

The Top-Down View

DRAM Subsystem Organization

◼ Channel

◼ DIMM

◼ Rank

◼ Chip

◼ Bank

◼ Row/Column

102

The DRAM Subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

103

Breaking down a DIMM (module)

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

104

Breaking down a Rank

Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

105

Breaking down a Chip

C
h

ip
 0

<0
:7

>

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

106

Inside a DRAM Chip

Access
Transistor

Storage
Capacitor

Bitline

Wordline

Wordline

B
it
li
n
e

Subarray
(2D Array of DRAM Cells)

Sense Amplifiers

DRAM Module

DRAM Chips

DRAM Bank

DRAM Cells

8

Row Buffer

DRAM Cell Operation

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

½ VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

9

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - ACTIVATE

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

½ VDD1. Raise wordline

2. Capacitor shares
charge with bitline

4. Amplify deviation
in the bitline

+ δ

3. Enable
sense amplifier

VDD

5. Capacitor charge is restored

10

6. Row buffer stores the cell value

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation – READ/WRITE

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

Read/Write the value
latched in sense amplifier

11

VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - PRECHARGE

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

VDD½ VDD 2. Precharge bitline for next access
1. Lower
wordline

3. Disable
sense amplifier

12

DRAM Bank Operation

112

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

Long Global Memory

Access Latency

Motivation of In-network Computing

How to optimize global memory access?

Multithreading

Shared Memory

Memory Coalescing

Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that
execute the same instruction
(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in
pipeline at a time (No
interlocking)

❑ Interleave warp execution to
hide latencies

◼ Register values of all threads stay
in register file

◼ FGMT enables long latency
tolerance

❑ Millions of pixels

115

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Latency Hiding and Occupancy
◼ FGMT can hide long latency operations (e.g., memory accesses)

◼ Occupancy: ratio of active warps to the maximum number of
warps per GPU core

4 active warps2 active warps

116

Memory Coalescing (I)

◼ Memory Coalescing：

❑ When threads in the same warp access consecutive memory
locations in the same burst, the accesses can be combined
and served by one burst

❑ One DRAM transaction is needed

◼ If threads in the same warp access locations not in the
same burst, accesses cannot be combined

❑ Multiple transactions are needed

❑ Takes longer to service data to the warp

❑ Sometimes called memory divergence

Slide credit: Izzat El Hajj
117

◼ When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

◼ Peak bandwidth utilization occurs when all threads in a
warp access one cache line (or several consecutive cache
lines)

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced Coalesced

Memory Coalescing (II)

118Slide credit: Hwu & Kirk

Uncoalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1M3,1 M1,2M0,2 M2,2M3,2

M1,2M0,2 M2,2M3,2

M1,3M0,3 M2,3M3,3

M1,3M0,3 M2,3M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access

direction

in Kernel

code

…

119Slide credit: Hwu & Kirk

Coalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access

direction

in Kernel

code

…

120Slide credit: Hwu & Kirk

Shared Memory

◼ Shared memory is an interleaved (banked) memory

❑ Each bank can service one address per cycle

◼ Typically, 32 banks in NVIDIA GPUs

❑ Successive 32-bit words are assigned to successive banks

◼ Bank = Address % 32

◼ Bank conflicts are only possible within a warp

❑ No bank conflicts between different warps

121

Shared Memory Bank Conflicts (I)

◼ Bank conflict free

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Linear addressing: stride = 1 Random addressing 1:1

122Slide credit: Hwu & Kirk

Shared Memory Bank Conflicts (II)

◼ N-way bank conflicts

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

123Slide credit: Hwu & Kirk

Use Shared Memory to Improve Coalescing

Md Nd

W
ID

T
H

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

Slide credit: Hwu & Kirk 124

Reducing Shared Memory Bank Conflicts

◼ Bank conflicts are only possible within a warp

❑ No bank conflicts between different warps

◼ If strided accesses are needed, some optimization
techniques can help

❑ Padding

❑ Randomized mapping

◼ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991

❑ Hash functions

◼ V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

125

Data Reuse

◼ Data reuse:

❑ Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){

 for (int j = 0; j < 3; j++){

 sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

 }

}

126

9 elements per thread

Data Reuse: Tiling
◼ To take advantage of data reuse, we divide the input into tiles

that can be loaded into shared memory

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];

…

Load tile into shared memory l_data

__syncthreads();

for (int i = 0; i < 3; i++){

 for (int j = 0; j < 3; j++){

 sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

 }

}

127

(L_SIZE+2)2/L_SIZE2

elements per thread

◼ void __syncthreads();

◼ Synchronizes all threads in a block

◼ Once all threads in a block have reached this point,
execution resumes normally

◼ Used to avoid RAW / WAR / WAW hazards when
accessing shared or global memory

128

Synchronization Function

Tiling/Blocking in On-chip Memories

◼ Tiling or Blocking

❑ Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the on-chip RAM (or other
on-chip memory, e.g., scratchpad)

❑ Avoids on-chip RAM conflicts between different chunks of
computation

❑ Essentially: Divide the working set so that each piece fits in
the on-chip RAMs

❑ Let’s first see an example for CPUs

129

Naïve Matrix Multiplication (I)

◼ Matrix multiplication: C = A x B

◼ Consider two input matrices A and B in row-major layout

❑ A size is M x P

❑ B size is P x N

❑ C size is M x N

130

A

B

C

P

M

P N

i

j
k

k

Naïve Matrix Multiplication (II)

◼ Naïve implementation of matrix multiplication

❑ Poor access locality

131

#define A(i,j) matrix_A[i * P + j]

#define B(i,j) matrix_B[i * N + j]

#define C(i,j) matrix_C[i * N + j]

for (i = 0; i < M; i++){ // i = row index

 for (j = 0; j < N; j++){ // j = column index

 C(i, j) = 0; // Set to zero

 for (k = 0; k < P; k++) // Row x Col

 C(i, j) += A(i, k) * B(k, j);

 }

}

A

B

C

P

M

P N

i

jk

k

Consecutive accesses to B are far from

each other, in different memory lines.

Every access to B is likely to cause a row

buffer miss

Tiled Matrix Multiplication (I)

◼ Tiled Matrix Multiplication:

❑ Achieve better on-chip RAM locality
by computing on smaller tiles or
blocks that fit in the RAMs

132

A

B

C

P

M

P N

k

k

tile_dim

t
i
l
e
_
d
i
m i

j

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix Multiplication (II)

◼ Tiled implementation operates on submatrices (tiles or
blocks) that fit fast RAMs (cache, scratchpad, RF)

133

#define A(i,j) matrix_A[i * P + j]

#define B(i,j) matrix_B[i * N + j]

#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){

 for (J = 0; J < N; J += tile_dim){

 Set_to_zero(&C(I, J)); // Set to zero

 for (K = 0; K < P; K += tile_dim)

 Multiply_tiles(&C(I, J), &A(I, K), &B(K, J));

 }

}

Multiply small submatrices (tiles or blocks)
of size tile_dim x tile_dim

A

B

C

P

M

P N

k

k
tile_dim

t
i
l
e
_
d
i
m

i

j

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

N

N

Example: Matrix-Matrix Multiplication (I)

C = A x B

A

B

C

N

N

N

N

Slide credit: Izzat El Hajj
134

N

N

Example: Matrix-Matrix Multiplication (II)

A

B

C

N

N

N

N

Parallelization approach: assign one thread to each element in the output matrix (C)

Slide credit: Izzat El Hajj

C = A x B

135

Example: Matrix-Matrix Multiplication (III)

__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

 unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
 unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

 float sum = 0.0f;
 for(unsigned int i = 0; i < N; ++i) {

sum += A[row*N + i]*B[i*N + col];
 }
 C[row*N + col] = sum;

}

Slide credit: Izzat El Hajj
136

N

N

A

B

C

N

N

N

N

C = A x B

N

N

Reuse in Matrix-Matrix Multiplication (I)

A

B

C

N

N

N

N

Some of the

threads in the

same thread

block use the

same input data

Slide credit: Izzat El Hajj

C = A x B

137

N

N

Reuse in Matrix-Matrix Multiplication (II)

A

B

C

N

N

N

N

Some of the

threads in the

same thread

block use the

same input data

Slide credit: Izzat El Hajj

C = A x B

138

Reuse in Matrix-Matrix Multiplication (III)

◼ Sometimes, we are lucky:

❑ The thread finds the data in the L1 cache because it was
recently loaded by another thread

◼ Sometimes, we are not lucky:

❑ The data gets evicted from the L1 cache before another
thread tries to load it

◼ Solution:

❑ Let the threads work together to load part of the data and
ensure that all threads that need it use it before loading more
data

❑ Use shared memory to ensure data stays close

❑ Optimizing called tiling because divides input to tiles

Slide credit: Izzat El Hajj
139

N

N

Tiled Matrix-Matrix Multiplication (I)

A

B

C

N

N

N

N

Step 1: Load

the first tile of

each input

matrix to shared

memory (each

thread loads

one element)

Slide credit: Izzat El Hajj

Ctile = Atile1 x Btile1

140

Tiled Matrix-Matrix Multiplication (II)

Ctile += Atile1 x Btile1

Atile1

Btile1

Ctile

Step 2: Each

thread computes its

partial sum from

the tiles in shared

memory (threads

wait for each other

to finish)

Slide credit: Izzat El Hajj
141

N

N

Tiled Matrix-Matrix Multiplication (III)

A

B

C

N

N

N

N

…accumulate

the second tile

Slide credit: Izzat El Hajj

Ctile += Atile2 x Btile2

142

N

N

Tiled Matrix-Matrix Multiplication (IV)

A

B

C

N

N

N

N

…and

accumulate

the third tile

Slide credit: Izzat El Hajj

Ctile += Atile3 x Btile3

143

Tiled Matrix-Matrix Multiplication (V)
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

 // Load tile to shared memory
 A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
 B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
 __syncthreads();

 // Compute with tile
 for(unsigned int i = 0; i < TILE_DIM; ++i) {
 sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
 }
 __syncthreads();

}

C[row*N + col] = sum;

Declare arrays in shared memory

Threads wait for each other to finish loading before computing

Threads wait for each other to finish computing before loading

Slide credit: Izzat El Hajj
144

State-of-the-art CPU GPU and FPGA

Cores
(Threads)

TFLOPS
Memory Size
(Bandwidth)

PCIe Network

CPU (AMD
Threadrippe
r 3995WX)

64 (128)
2.8 (FP32),
1.4 (FP64)

512GB
(80GB/s)

32.0GB/s
(PCIe 4.0 X16)

No

GPU (Nvidia
A100)

8192 (128K)

19.5 (FP32),
9.7 (FP64),

156 (FP32, Tensor),
312 (FP16, Tensor)

40/80GB
(1935GB/s)

32.0GB/s
(PCIe 4.0 X16)

No

FPGA
(U280)

9,024
(25x18
MULs)

1.8 (FP32)
40GB

(460GB/s)
16.0GB/s

(PCIe 4.0 X8)
Yes

Limitation of GPU

146

CPU

GPU

PCIe

32.0GB/s

1935GB/s

147

Serial Code of Prefix sum:

GPU Code of Prefix sum:

 Multi-pass (ISSUE)

Limitation of GPU
// Fills prefix sum array
void fillPrefixSum(int arr[], int n, int
prefixSum[])
{ prefixSum[0] = arr[0];
// Adding present element
for (int i = 1; i < n; i++)
prefixSum[i] = prefixSum[i-1] + arr[i]; }

Nvidia’s Success: Transparent Scalability

◼ Hardware is free to schedule thread blocks

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

ti
m

e

148

Slide credit: Hwu & Kirk

ti
m

e

Gen 1
Gen 2

The CUDA code stays the same and enjoys performance

improvement while GPU hardware evolves.

Key Messages:

◼ Programming model is the key success of Nvidia, rather
than the GPU itself.

◼ GPU has an order of magnitude higher memory bandwidth
and compute power than CPU.

◼ Offloading a task to GPU pays off only when the task has
enough compute intensity.

◼ AI task needs compute-intensive accelerators, e.g., GPU
and AI processor.

149

Prog. Model 3: Multithreaded

150

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

This programming model (software) is called:

SPMD: Single Program Multiple Data

Executed on a SIMT machine (hardware)

Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different
piece of data

❑ Each thread has its own context (i.e., can be
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

❑ A warp is essentially a SIMD operation formed by hardware!

151

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread

independently on any type of scalar pipeline

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
152

Brief Review of GPU Architecture (I)

◼ Streaming Processor Array

❑ Tesla architecture (G80/GT200)

153

Brief Review of GPU Architecture (II)

◼ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

154

NVIDIA Fermi architecture

Brief Review of GPU Architecture (III)

◼ Streaming Multiprocessors (SM) or Compute Units (CU)

❑ SIMD pipelines

◼ Streaming Processors (SP) or CUDA ”cores”

❑ Vector lanes

◼ Number of SMs x SPs across generations

❑ Tesla (2007): 30 x 8

❑ Fermi (2010): 16 x 32

❑ Kepler (2012): 15 x 192

❑ Maxwell (2014): 24 x 128

❑ Pascal (2016): 56 x 64

❑ Volta (2017): 80 x 64

155

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →

dynamically obtain and maximize benefits of SIMD processing
157

High-Level View of a GPU

158Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that
execute the same instruction
(on different data elements)

◼ Fine-grained multithreading

❑ No interlocking: One instruction per
thread in pipeline at a time.

❑ Interleave warp execution to hide
latencies

◼ Register values of all threads stay in
register file

◼ FGMT enables long latency tolerance

❑ Millions of pixels

159

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

160

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

161

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

◼ Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

162

◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

163

Slide credit: Hwu & Kirk

From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

164

NVIDIA Fermi architecture

SPMD
◼ Single procedure/program, multiple data

❑ This is a programming model rather than computer
organization

◼ Each processing element executes the same procedure, except on
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Essentially, multiple instruction streams execute the same
program

❑ Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware
165

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation
of full new warps

166

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

167

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

168

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

169

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Clarification of Some GPU Terms

170

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Pipelined
functional unit /
Scalar pipeline

Streaming
processor /
CUDA core

- Functional unit that executes instructions for one
GPU thread

SIMD functional
unit /
SIMD pipeline

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for
an entire warp

GPU core Streaming
multiprocessor

Compute unit It contains one or more warp schedulers and one
or several SIMD pipelines

Programming Model vs. Hardware Execution Model

171

Hardware Programming Model Programming Model

Core

Streaming

 Multi-processor

GPU

CUDA core: Thread

Thread block (s)

Wrap

Thread blocks

NVIDIA H100 Block Diagram

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

172

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

48 TFLOPS Single Precision*

24 TFLOPS Double Precision*

800 TFLOPS (FP16, Tensor Cores)*

173
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

* Preliminary performance estimates

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

◼ Asynchronous memory copy with LDGSTS instruction vs. TMA

NVIDIA H100 Tensor Memory Accelerator

174https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

TMA unit reduces addressing overhead

A single thread per warp issues the
TMA operation

Support for different tensor layouts
(1D-5D)

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

◼ Shared memory virtual address space distributed across the
blocks of a cluster

◼ Load, store, and atomic operations to other SM’s shared memory

NVIDIA H100 Distributed Shared Memory

175https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Thread block clusters and distributed shared memory (DSMEM) are leveraged
via cooperative_groups API

TMA unit supports copies across thread blocks in a cluster

Asynchronous transaction barriers

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

