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Where Are We?



The von Neumann Model
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von Neumann Model: Two Key Properties

◼ Von Neumann model is also called stored program computer 
(instructions in memory). 

◼ von Neumann Model has two key properties:

❑ 1，Stored program
◼ Instructions stored in a linear memory array

◼ Memory is unified between instructions and data

❑ The interpretation of a stored value depends on the control signals

❑ 2，Sequential instruction processing
◼ One instruction processed (fetched, executed, completed) at a time

◼ Program counter (instruction pointer) identifies the current instruction

◼ Program counter is advanced sequentially except for control transfer 
instructions
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Where Are We?



A Single-Cycle Microarchitecture

A Closer Look



Single-cycle Machine
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A Very Basic Instruction Processing Engine

◼ Each instruction takes a single clock cycle to execute.

◼ Only combinational logic is used to implement instruction 
execution. 

❑ No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state 

at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state 

at the end of a clock cycle
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Multi-Cycle Microarchitectures
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Where Are We?



Multi-Cycle Microarchitectures

◼ Goal: Let each instruction take (close to) only as much time 
it really needs

◼ Idea of multi-cycle CPU:

❑ Decrease clock cycle time

❑ Each instruction takes as many clock cycles as it needs to take

◼ Multiple state transitions per instruction

◼ The states followed by each instruction is different
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The “Process Instruction” Step of Multi-Cycle CPU

◼ ISA specifies abstractly what AS’ should be, given an 
instruction and AS

❑ It defines an abstract finite state machine where

◼ State = programmer-visible state 

◼ Next-state logic = instruction execution specification

❑ From ISA point of view, there are no “intermediate states” 
between AS and AS’ during instruction execution

◼ One state transition per instruction

◼ Microarchitecture implements how AS is transformed to AS’

❑ We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction

◼ Single-cycle: AS → AS’ (transform AS to AS’ in a single clock cycle)

◼ Multi-cycle: AS → AS+MS1 → AS+MS2 → AS+MS3 → AS’ (take 

multiple clock cycles to transform AS to AS’)
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Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state 

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state 

at the end of a clock cycle
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Where Are We?



Can We Use the Idle Hardware to Improve Concurrency?

 
◼ Goal: More concurrency → Higher instruction throughput 

(i.e., more “work” completed in one cycle)

◼ Key Idea: When an instruction is using some resources in 
its processing phase, process other instructions on idle 
resources not needed by that instruction

❑ E.g., when an instruction is being decoded, fetch the next 
instruction

❑ E.g., when an instruction is being executed, decode another 
instruction

❑ E.g., when an instruction is accessing data memory (ld/st), 
execute the next instruction

❑ E.g., when an instruction is writing its result into the register 
file, access data memory for the next instruction

15



Pipelining: Basic Idea

◼ More systematically:

❑ Pipeline the execution of multiple instructions

❑ Analogy: “Assembly line processing” of instructions

◼ Idea of pipelining:

❑ Divide the instruction processing cycle into distinct “stages” of 
processing

❑ Ensure enough hardware resources to process one instruction in 
each stage

❑ Process a different instruction in each stage

◼ Instructions consecutive in program order are processed in 
consecutive stages

◼ Benefit: Increases instruction processing throughput (1/CPI)

16



The Laundry Analogy: Pipeline 

◼ “place one dirty load of clothes in the washer”,

◼ “when the washer is finished, place the wet load in the dryer”,

◼ “when the dryer is finished, take out the dry load and fold”,

◼ “when folding is finished, put the clothes away”.

17

  Observations:
                                     1, steps to do a load are sequentially dependent,

        2, different steps do not share resources,

                                     3, no dependence between different loads.

   

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task 

order

Task 

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry
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- latency per load is the same

- throughput increased by 4X

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Example: Execution of Four Independent ADDs

◼ Multi-cycle: 4 cycles per instruction

◼ Pipelined: 4 cycles per 4 instructions (steady state)
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Agenda for Today

◼ Why GPU? 

◼ Hardware Execution Model

◼ Programming Model

❑ SISD vs. SIMD vs. SPMD

❑ GPU Programming Example

◼ Advance

❑ SIMT (Hardware) & Warp (Software)
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Motivation of In-network Computing

Why GPU?

Need More Computing Power.



OpenAI: Compute Power Needed by NN Model

Model Model Size
Compute/iteration

(OPs)

VGG 19 114M ~19.6 B

“GPT-3” 175B ~250 T

One Forward Pass of Model:
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◼ CPU: 

❑ Few complex cores

❑ Larger cache for low memory 
latency

❑ Large and slow memory

CPU vs GPU： Compute Perspective

24

◼ GPU: 

❑ Lots of simple cores

❑ Small cache for low memory 
latency

❑ Small and fast memory



State-of-the-art CPU GPU and FPGA

Cores 
(Threads)

TFLOPS
Memory Size 
(Bandwidth)

PCIe Network

CPU (AMD 
Threadrippe
r 3995WX)

64 (128)
2.8 (FP32), 
1.4 (FP64)

512GB 
(80GB/s)

32.0GB/s 
(PCIe 4.0 X16)

No

GPU (Nvidia 
H100)

18432 (128K)

67 (FP32),
34 (FP64),

989 (FP32, Tensor),
1979 (FP16, Tensor)

80GB 
(3350GB/s)

64.0GB/s 
(PCIe 5.0 X16)

No

FPGA 
(U280)

9,024 
(25x18 
MULs)

1.8 (FP32)
40GB 

(460GB/s)
16.0GB/s 

(PCIe 4.0 X8)
Yes



Relationship between CPU and GPU 

26

PCI Bus

CPU GPU



Motivation of In-network Computing

More cores → More trouble

Challenge: How to manipulate them?



GPU Computing

◼ Key Idea: 

❑ Computation is offloaded to the GPU

◼ Three steps:

❑ CPU-GPU data transfer (1)

❑ GPU kernel execution (2)

❑ GPU-CPU data transfer (3)

CPU 

memory

CPU 

cores
Matrix

GPU 

memory

GPU 

cores
Matrix

1

3

2
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◼ CPU-GPU Co-processing: 

❑ CPU: Sequential or modestly parallel sections

❑ GPU: Massively parallel sections

Serial Code (CPU):

. . .

. . .

Parallel Kernel (GPU):

KernelA<<<nBlk, nThr>>>(args);

Serial Code (CPU):

Parallel Kernel (GPU): 

KernelB<<<nBlk, nThr>>>(args);

Programming Model: CPU and GPU 

29



GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g., 
an array processor)

◼ However, the programming is done using threads, NOT 
SIMD instructions

◼ To understand this, let’s go back to our parallelizable code 
example

◼ But, before that, let’s distinguish between 

❑ Programming Model (Software)

       vs.

❑ Execution Model (Hardware)

30



Programming Model vs. Hardware Execution Model

◼ Programming Model： how the programmer expresses the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 
Multi-threaded (MIMD, SPMD), …

◼ Hardware Execution Model： how the hardware executes the 
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor, 
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Discussion: Execution Model can be very different from 
Programming Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)
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GPU: Programming Model vs. Hardware Execution Model
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Agenda for Today

◼ Where is GPU? & Key Message
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◼ Programming Model
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❑ GPU Programming Example
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❑ SIMT (Hardware) & Warp (Software)
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A Many-core GPU 

(Hardware Execution Model)



NVIDIA GeForce GTX 285

◼ NVIDIA-speak:

❑ 240 stream processors (CUDA cores)

❑ “SIMT execution”

 

◼ Generic speak:

❑ 30 cores

❑ 8 SIMD functional units per core

◼ NVIDIA, “NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 35



NVIDIA GeForce GTX 285 “core”(SM)

…

= instruction stream decode= SIMD functional unit, control 

   shared across 8 units

   
= execution context storage = multiply-add

= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian 36



NVIDIA GeForce GTX 285 “core”

…
64 KB of storage 

for thread contexts 

(registers)

◼ Groups of 32 threads share instruction stream (each group is 
a Warp)

◼ Up to 32 warps are simultaneously interleaved

◼ Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian 37



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30K threads

Slide credit: Kayvon Fatahalian 38
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NVIDIA V100

◼ NVIDIA-speak:

❑ 5120 stream processors (CUDA cores)

❑ “SIMT execution”

 

◼ Generic speak:

❑ 80 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning

◼ NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.
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NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/
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NVIDIA A100

◼ NVIDIA-speak:

❑ 6912 stream processors (CUDA cores)

❑ “SIMT execution”

 

◼ Generic speak:

❑ 108 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ New floating point data type (TF32)

◼ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 42

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA H100

◼ NVIDIA-speak:

❑ 8448 stream processors (CUDA cores)

❑ “SIMT execution”

 

◼ Generic speak:

❑ 132 cores

❑ 64 SIMD functional units per core

❑ Tensor cores for Machine Learning
◼ Support for sparsity

◼ Support for transformer

◼ https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 44



NVIDIA H100 Block Diagram

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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GPU Trend: H100 vs. A100

46

FP8 FP16 FP32 FP64
Memory 

bandwidth
Memory 
capacity

H100 4000T 2000T 1000T 60T 3TB/s 80GB

A100 666T 666T 333T 20T 2TB/s 80GB

Compute power scales well.

GPU memory capacity does not scale well.



A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming 
model)

❑ Each thread executes the same code but operates a 
different piece of data

❑ Each thread has its own context (i.e., can be 
treated/restarted/executed independently)
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How Can You Exploit Parallelism Here?

49

for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming options 
to exploit instruction-level parallelism 

present in this sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code
◼ Can be executed on thee processors:

◼ 1, Pipelined processor

◼ 2, Out-of-order execution processor

❑ Independent instructions executed 
when ready

❑ Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

❑ In other words, the loop is dynamically 
unrolled by the hardware

◼ 3, Superscalar or VLIW processor

❑ Can fetch and execute multiple 
instructions per cycle

for (i=0; i < N; i++)

    C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

VLD     A → V1

VLD     B → V2

VADD     V1 + V2 → V3

VST     V3 → C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

This programming model (software) is called:

SPMD: Single Program Multiple Data



SPMD
◼ SPMD: Single procedure/program, multiple data 

❑ This is a programming model rather than computer 
organization

◼ Each processing element executes the same procedure, except on 
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Key Idea of SPMD: multiple instruction streams execute the 
same program

❑ Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware
54
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CUDA/OpenCL Programming Model

◼ Single Program Multiple Data (SPMD), e.g., CUDA

❑ Bulk synchronous programming: Global (coarse-grain) 
synchronization between kernels

◼ The device (typically GPU) executes CUDA kernels

❑ Grid 

❑ Thread Block

◼ CUDA runtime schedules at granularity of thread block.

◼ A thread block is a programming abstraction that represents a 
group of threads that can be executed in parallel. 

◼ Within a block, shared memory, and synchronization. 

❑ Thread

◼ A thread corresponds to an iteration.
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GPU: Programming Model vs. Hardware Execution Model
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Hardware Execution Model CUDA Programming Model

Streaming

 Multi-processor

GPU

CUDA core Thread

Thread block

Grid ...



CUDA: Memory Hierarchy
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◼ Function prototypes

   float serialFunction(…);

   __global__ void kernel(…);

◼ main()

❑ 1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);

❑ 2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);

❑ 3) Execution configuration setup: #blocks and #threads

❑ 4) Kernel call – kernel<<<execution configuration>>>(args…);

❑ 5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …);

◼ Kernel – __global__ void kernel(type args,…)

❑ Automatic variables transparently assigned to registers

❑ Shared memory:  __shared__

❑ Intra-block synchronization: __syncthreads();

R
e
p

e
a
t

a
s
 n

e
e
d

e
d

Traditional Program Structure in CUDA

59

Slide credit: Hwu & Kirk



CUDA Programming Language
◼ Memory allocation

cudaMalloc((void**)&d_in, #bytes);

◼ Memory copy

cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

◼ Kernel launch

kernel<<< #blocks, #threads >>>(args);

◼ Memory deallocation

cudaFree(d_in);

◼ Explicit synchronization

cudaDeviceSynchronize();

60



First GPU Example: Vector Addition (I)

◼ Key Idea: one GPU thread to each element-wise addition

61



First GPU Example: Vector Addition (II)

◼ A grid: the whole set of threads 

◼ We need a way to assign threads to GPU cores
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First GPU Example: Vector Addition (III)

◼ We group threads into blocks

Block 0 Block 1 Block 2 Block 3

63

blockIdx = 0 blockIdx = 1 blockIdx = 2 blockIdx = 3

threadIdx = 0 threadIdx = 1 threadIdx = 2 threadIdx = 2

blockDim = 4



GPU: Programming Model vs. Hardware Execution Model
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Hardware Execution Model CUDA Programming Model

Streaming

 Multi-processor

GPU

CUDA core Thread

Thread block

Grid ...



Host Code Example: Vector Addition
void vecadd(float* A, float* B, float* C, int N) {

    //1, Allocate GPU memory
    float *A_d, *B_d, *C_d;
    cudaMalloc((void**) &A_d, N*sizeof(float));
    cudaMalloc((void**) &B_d, N*sizeof(float));
    cudaMalloc((void**) &C_d, N*sizeof(float));

    //2, Copy data to GPU memory
    cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);

    //3, Perform computation on GPU
    ...

    //4, Copy data from GPU memory
    cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);

    //5, Deallocate GPU memory
    cudaFree(A_d);
    cudaFree(B_d);
    cudaFree(C_d);
}

65Slide credit: Izzat El Hajj

const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;
vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);



Kernel Code Example: Vector Addition

66
Slide credit: Izzat El Hajj

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

    int i = blockDim.x*blockIdx.x + threadIdx.x;

    C[i] = A[i] + B[i];

}

blockDim: block dimension

blockIdx: block index within a grid

threadIdx: thread index within a block



Boundary Conditions

◼ Question: What if the size of the input is not a multiple of 
the number of threads per block? 

❑ Solution: use the ceiling to launch extra threads then omit 
the threads after the boundary

◼ Host code: 

◼ Kernel code:

const unsigned int numBlocks = (N +numThreadsPerBlock – 1)/numThreadsPerBlock;

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

    int i = blockDim.x*blockIdx.x + threadIdx.x;

    if(i < N) {
        C[i] = A[i] + B[i];
    }
}

67

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);



Sample GPU Program: Matrix Multiplication

68Slide credit: Hyesoon Kim



Indexing and Memory Access

◼ Images are 2D data structures

❑ height x width

❑ Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width

Image[0][1]

Image[1][2]

69
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Image Layout in Memory

◼ Row-major layout

◼ Image[j][i] = Image[j x width + i] 

Image[0][1] = Image[0 x 8 + 1]

Image[1][2] = Image[1 x 8 + 2]

70

Stride = width



Indexing and Memory Access: 1D Grid

◼ One GPU thread per pixel

◼ Grid of Blocks of Threads
❑ gridDim.x, blockDim.x

❑ blockIdx.x, threadIdx.x

Block 0

Block 0

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

blockIdx.x

threadIdx.x

blockIdx.x * blockDim.x + 

threadIdx.x

6 * 4 + 1 = 25
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GPU: Programming Model vs. Hardware Execution Model
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Hardware Execution Model CUDA Programming Model
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SIMT (Hardware) & Warp (Software)

◼ SIMT: Single Instruction Multiple Thread 

❑ More precisely, SIMD (Single Instruction Multiple Data)

❑ Key Feature: 16 CUDA cores in a SM are executed in a lock step.

74

◼ Warp:

❑ A warp, a basic execution unit, consists of 32 consecutive threads 

❑ A thread block is divided into warps for SIMT execution. 

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps



Motivation of In-network Computing

Why SIMT and Warp?

Reduce GPU scheduling overhead



Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

How to Form Warps?

76

for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Iter. 32



Mapping Warps on a SIMT Hardware 

◼ Warp: 

❑ A thread block is divided into warps. 

❑ A warp executes the same instruction on different data elements

◼ SIMT Pipeline:

❑ 16 CUDA cores are executed in a lock step to serve each warp.

77

Thread Warp 0
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar

Thread

0

Scalar

Thread

1

Scalar

Thread

2

Scalar

Thread

31

Common PC

SIMT Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



GPU Execution with Warps 
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for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

◼ Assume: a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained 

multithreading of warps.

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle
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W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



Motivation of In-network Computing

SIMT is not SIMD!



SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions → 

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction → 

dynamically obtain and maximize benefits of SIMD processing
81



SIMT Code vs. SIMD Code

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
  int tid = blockDim.x * blockIdx.x + threadIdx.x;
  int varA = aa[tid];
  int varB = bb[tid];
  C[tid] = varA + varB;
}

CPU scalar code

CUDA code

Slide credit: Hyesoon Kim 82

// there are 25000 loops with SIMD=4
…
v_A = vec_load (A);
v_B = vec_load (B);
 v_C = vec_add(v_A, v_B);
Vec_store(v_C, C)
…
}

CPU vector code



Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread 

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know vector 

length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp) 
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD 
hardware
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Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths
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Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1
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C D

E
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Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD 
pipeline to save area 
on control logic

❑ Groups scalar threads 
into warps

◼ Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt



SIMD Utilization

◼ Intra-warp divergence

Compute(threadIdx.x);

if (threadIdx.x % 2 == 0){

  Do_this(threadIdx.x);

}

else{

  Do_that(threadIdx.x);

}

Compute

If

Else
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Increasing SIMD Utilization

◼ Divergence-free execution

Compute(threadIdx.x);

if (threadIdx.x < 32){

  Do_this(threadIdx.x * 2);

}

else{

  Do_that((threadIdx.x%32)*2+1);

}

Compute

If

Else
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Vector Reduction: Naïve Mapping (I)

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11
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1
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Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

88Slide credit: Hwu & Kirk
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Vector Reduction: Naïve Mapping (II)

◼ Program with low SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {

  __syncthreads();

  if (t % (2*stride) == 0)

    partialSum[t] += partialSum[t + stride];

}

89



Divergence-Free Mapping (I)

◼ All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

it
e
ra

ti
o
n

s

90Slide credit: Hwu & Kirk
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Divergence-Free Mapping (II)

◼ Program with high SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 0;  stride >> 1){

  __syncthreads();

  if (t < stride)

    partialSum[t] += partialSum[t + stride];

}
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GPU Memories



Memory in the GPU Architecture
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Memory in the GPU Architecture
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◼ Example of data movement between GPU global memory 
(DRAM) and GPU cores.

NVIDIA A100 Tensor Core GPU Architecture In-Depth 

40 
NVIDIA A100 Tensor Core GPU Architecture 

 

 
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy 
instruction that bypasses L1 cache and register file (RF).  Additionally, A100’s more efficient Tensor 
Cores reduce shared memory (SMEM) loads. 

Figure 15. A100 SM Data Movement Efficiency 

New asynchronous barriers work together with the asynchronous copy instruction to enable 

efficient data fetch pipelines, and A100 increases maximum SMEM allocation per SM 1.7x to 

164 KB (vs 96 KB on V100). With these improvements A100 SMs continuously data stream 

data to keep the L2 cache constantly utilized. 

 

L2 Cache and DRAM Bandwidth improvements - The NVIDIA A100 GPU’s increased 

number of SMs and more powerful Tensor Cores in turn increase the required data fetch rates 

from DRAM and L2 cache. To feed the Tensor Cores, A100 implements a 5-site HBM2 memory 

subsystem with bandwidth of 1555 GB/sec, over 1.7x faster than V100. A100 further provides 

2.3x the L2 cache read bandwidth of V100.  

 

Alongside the raw data bandwidth improvements, A100 improves data fetch efficiency and 

reduces DRAM bandwidth demand with a 40 MB L2 cache that is almost 7x larger than that of 

Tesla V100. To fully exploit the L2 capacity A100 includes improved cache management 

controls. Optimized for neural network training and inferencing as well as general compute 

workloads, the new controls ensure that data in the cache is used more efficiently by minimizing 

writebacks to memory and keeping reused data in L2 to reduce redundant DRAM traffic. 

  

NVIDIA V100 & A100 Memory Hierarchy

A100 feature: 
Direct copy from L2 
to scratchpad, 
bypassing L1 and 
register file.

95https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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CUDA Variable Type Qualifiers

◼ __device__ is optional when used with __shared__, or __constant__

◼ Recall cudaMalloc(…) allocates memory from the host

❑ Constant memory can also be allocated and initialized from the host

◼ Automatic variables without any qualifier reside in a register

❑ Except arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

int localArr[N]; global thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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Memory Hierarchy in CUDA Programs

97



Nvidia’s Success: Transparent Scalability

◼ Hardware is free to schedule thread blocks

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks. 

ti
m

e
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Slide credit: Hwu & Kirk
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Gen 1
Gen 2

The CUDA code stays the same and enjoys performance 

improvement while GPU hardware evolves. 



Key Messages:

◼ Programming model is the key success of Nvidia, rather 
than the GPU itself. 

◼ GPU has an order of magnitude higher memory bandwidth 
and compute power than CPU.

◼ Offloading a task to GPU pays off only when the task has 
enough compute intensity. 

◼ AI task needs compute-intensive accelerators, e.g., GPU 
and AI processor.
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Recall: Comparison of Memories
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The DRAM Subsystem

The Top-Down View



DRAM Subsystem Organization

◼ Channel

◼ DIMM

◼ Rank

◼ Chip

◼ Bank

◼ Row/Column
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The DRAM Subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”
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Breaking down a DIMM (module)

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1
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Breaking down a Rank
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<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

105



Breaking down a Chip

C
h
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Inside a DRAM Chip 

Access 
Transistor

Storage 
Capacitor

Bitline

Wordline

Wordline

B
it
li
n
e

Subarray
(2D Array of DRAM Cells)

Sense Amplifiers

DRAM Module

DRAM Chips

DRAM Bank

DRAM Cells

8

Row Buffer



DRAM Cell Operation

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

½  VDD

1. ACTIVATE (ACT)

2. READ/WRITE 

3. PRECHARGE (PRE)

9



1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - ACTIVATE

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

½  VDD1. Raise wordline

2. Capacitor shares 
charge with bitline 

4. Amplify deviation 
in the bitline

+ δ

3. Enable 
sense amplifier

VDD

5. Capacitor charge is restored

10

6. Row buffer stores the cell value



1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation – READ/WRITE

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

Read/Write the value 
latched in sense amplifier

11

VDD



1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - PRECHARGE

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

VDD½  VDD 2. Precharge bitline for next access
1. Lower 
wordline

3. Disable
sense amplifier
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DRAM Bank Operation
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R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data
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(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)
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Row 1
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Long Global Memory 

Access Latency



Motivation of In-network Computing

How to optimize global memory access?

Multithreading

Shared Memory

Memory Coalescing



Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that 
execute the same instruction 
(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in 
pipeline at a time (No 
interlocking)

❑ Interleave warp execution to 
hide latencies

◼ Register values of all threads stay 
in register file

◼ FGMT enables long latency 
tolerance

❑ Millions of pixels 
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Latency Hiding and Occupancy
◼ FGMT can hide long latency operations (e.g., memory accesses)

◼ Occupancy: ratio of active warps to the maximum number of 
warps per GPU core

4 active warps2 active warps
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Memory Coalescing (I)

◼ Memory Coalescing： 

❑ When threads in the same warp access consecutive memory 
locations in the same burst, the accesses can be combined 
and served by one burst

❑ One DRAM transaction is needed

◼ If threads in the same warp access locations not in the 
same burst, accesses cannot be combined

❑ Multiple transactions are needed

❑ Takes longer to service data to the warp

❑ Sometimes called memory divergence

Slide credit: Izzat El Hajj
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◼ When accessing global memory, we want to make sure 
that concurrent threads access nearby memory locations

◼ Peak bandwidth utilization occurs when all threads in a 
warp access one cache line (or several consecutive cache 
lines)

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced Coalesced

Memory Coalescing (II)

118Slide credit: Hwu & Kirk



Uncoalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1
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Coalesced Memory Accesses
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Shared Memory

◼ Shared memory is an interleaved (banked) memory

❑ Each bank can service one address per cycle

◼ Typically, 32 banks in NVIDIA GPUs

❑ Successive 32-bit words are assigned to successive banks

◼ Bank = Address % 32

◼ Bank conflicts are only possible within a warp

❑ No bank conflicts between different warps
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Shared Memory Bank Conflicts (I)

◼ Bank conflict free

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Linear addressing: stride = 1 Random addressing 1:1

122Slide credit: Hwu & Kirk



Shared Memory Bank Conflicts (II)

◼ N-way bank conflicts

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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Use Shared Memory to Improve Coalescing
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Reducing Shared Memory Bank Conflicts

◼ Bank conflicts are only possible within a warp

❑ No bank conflicts between different warps

◼ If strided accesses are needed, some optimization 
techniques can help

❑ Padding

❑ Randomized mapping

◼ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991

❑ Hash functions

◼ V.d.Braak+, “Configurable XOR Hash Functions for Banked 
Scratchpad Memories in GPUs,” IEEE TC, 2016
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Data Reuse

◼ Data reuse:

❑ Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){

    for (int j = 0; j < 3; j++){

        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

    }

}

126

9 elements per thread



Data Reuse: Tiling
◼ To take advantage of data reuse, we divide the input into tiles 

that can be loaded into shared memory

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];

…

Load tile into shared memory l_data

__syncthreads();

for (int i = 0; i < 3; i++){

  for (int j = 0; j < 3; j++){

    sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

  }

}
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◼ void __syncthreads();

◼ Synchronizes all threads in a block

◼ Once all threads in a block have reached this point, 
execution resumes normally

◼ Used to avoid RAW / WAR / WAW hazards when 
accessing shared or global memory

128

Synchronization Function



Tiling/Blocking in On-chip Memories

◼ Tiling or Blocking 

❑ Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the on-chip RAM (or other 
on-chip memory, e.g., scratchpad)

❑ Avoids on-chip RAM conflicts between different chunks of 
computation

❑ Essentially: Divide the working set so that each piece fits in 
the on-chip RAMs

❑ Let’s first see an example for CPUs
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Naïve Matrix Multiplication (I)

◼ Matrix multiplication: C = A x B

◼ Consider two input matrices A and B in row-major layout

❑ A size is M x P

❑ B size is P x N

❑ C size is M x N
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Naïve Matrix Multiplication (II)

◼ Naïve implementation of matrix multiplication 

❑ Poor access locality

131

#define A(i,j) matrix_A[i * P + j] 

#define B(i,j) matrix_B[i * N + j] 

#define C(i,j) matrix_C[i * N + j]

for (i = 0; i < M; i++){ // i = row index

    for (j = 0; j < N; j++){ // j = column index

        C(i, j) = 0; // Set to zero

        for (k = 0; k < P; k++) // Row x Col

            C(i, j) += A(i, k) * B(k, j); 

    } 

} 

A

B

C

P

M

P N

i

jk

k

Consecutive accesses to B are far from 

each other, in different memory lines. 

Every access to B is likely to cause a row 

buffer miss



Tiled Matrix Multiplication (I)

◼ Tiled Matrix Multiplication: 

❑ Achieve better on-chip RAM locality 
by computing on smaller tiles or 
blocks that fit in the RAMs
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Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4
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Tiled Matrix Multiplication (II)

◼ Tiled implementation operates on submatrices (tiles or 
blocks) that fit fast RAMs (cache, scratchpad, RF)
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#define A(i,j) matrix_A[i * P + j] 

#define B(i,j) matrix_B[i * N + j] 

#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){

    for (J = 0; J < N; J += tile_dim){ 

        Set_to_zero(&C(I, J)); // Set to zero 

        for (K = 0; K < P; K += tile_dim) 

            Multiply_tiles(&C(I, J), &A(I, K), &B(K, J)); 

    } 

} 

Multiply small submatrices (tiles or blocks) 
of size tile_dim x tile_dim
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Example: Matrix-Matrix Multiplication (I)

C = A x B

A

B

C

N

N

N

N

Slide credit: Izzat El Hajj
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N

N

Example: Matrix-Matrix Multiplication (II)

A

B

C

N

N

N

N

Parallelization approach: assign one thread to each element in the output matrix (C)

Slide credit: Izzat El Hajj

C = A x B
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Example: Matrix-Matrix Multiplication (III)

__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

    unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
    unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

    float sum = 0.0f;
    for(unsigned int i = 0; i < N; ++i) {

sum += A[row*N + i]*B[i*N + col];
    }
    C[row*N + col] = sum;

}

Slide credit: Izzat El Hajj
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A

B

C

N

N

N

N

C = A x B



N

N

Reuse in Matrix-Matrix Multiplication (I)

A

B

C

N

N

N

N

Some of the 

threads in the 

same thread 

block use the 

same input data

Slide credit: Izzat El Hajj

C = A x B
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N

N

Reuse in Matrix-Matrix Multiplication (II)

A

B

C

N

N

N

N

Some of the 

threads in the 

same thread 

block use the 

same input data

Slide credit: Izzat El Hajj

C = A x B

138



Reuse in Matrix-Matrix Multiplication (III)

◼ Sometimes, we are lucky:

❑ The thread finds the data in the L1 cache because it was 
recently loaded by another thread

◼ Sometimes, we are not lucky:

❑ The data gets evicted from the L1 cache before another 
thread tries to load it

◼ Solution:

❑ Let the threads work together to load part of the data and 
ensure that all threads that need it use it before loading more 
data

❑ Use shared memory to ensure data stays close

❑ Optimizing called tiling because divides input to tiles

Slide credit: Izzat El Hajj
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N

N

Tiled Matrix-Matrix Multiplication (I)

A

B

C

N

N

N

N

Step 1: Load 

the first tile of 

each input 

matrix to shared 

memory (each 

thread loads 

one element)

Slide credit: Izzat El Hajj

Ctile = Atile1 x Btile1
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Tiled Matrix-Matrix Multiplication (II)

Ctile += Atile1 x Btile1

Atile1

Btile1

Ctile

Step 2: Each 

thread computes its 

partial sum from 

the tiles in shared 

memory (threads 

wait for each other 

to finish)

Slide credit: Izzat El Hajj
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N

N

Tiled Matrix-Matrix Multiplication (III)

A

B

C

N

N

N

N

…accumulate 

the second tile

Slide credit: Izzat El Hajj

Ctile += Atile2 x Btile2
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N

N

Tiled Matrix-Matrix Multiplication (IV)

A

B

C

N

N

N

N

…and 

accumulate 

the third tile

Slide credit: Izzat El Hajj

Ctile += Atile3 x Btile3
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Tiled Matrix-Matrix Multiplication (V)
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

    // Load tile to shared memory
    A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
    B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
    __syncthreads();

    // Compute with tile
    for(unsigned int i = 0; i < TILE_DIM; ++i) {
        sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
    }
    __syncthreads();

}

C[row*N + col] = sum;

Declare arrays in shared memory

Threads wait for each other to finish loading before computing

Threads wait for each other to finish computing before loading

Slide credit: Izzat El Hajj
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State-of-the-art CPU GPU and FPGA

Cores 
(Threads)

TFLOPS
Memory Size 
(Bandwidth)

PCIe Network

CPU (AMD 
Threadrippe
r 3995WX)

64 (128)
2.8 (FP32), 
1.4 (FP64)

512GB 
(80GB/s)

32.0GB/s 
(PCIe 4.0 X16)

No

GPU (Nvidia 
A100)

8192 (128K)

19.5 (FP32),
9.7 (FP64),

156 (FP32, Tensor),
312 (FP16, Tensor)

40/80GB 
(1935GB/s)

32.0GB/s 
(PCIe 4.0 X16)

No

FPGA 
(U280)

9,024 
(25x18 
MULs)

1.8 (FP32)
40GB 

(460GB/s)
16.0GB/s 

(PCIe 4.0 X8)
Yes



Limitation of GPU
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CPU

GPU

PCIe

32.0GB/s

1935GB/s
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Serial Code of Prefix sum:

GPU Code of Prefix sum:

    Multi-pass (ISSUE)

Limitation of GPU
// Fills prefix sum array
void fillPrefixSum(int arr[], int n, int 
prefixSum[])
{ prefixSum[0] = arr[0];
// Adding present element
for (int i = 1; i < n; i++)
prefixSum[i] = prefixSum[i-1] + arr[i]; }



Nvidia’s Success: Transparent Scalability

◼ Hardware is free to schedule thread blocks

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks. 

ti
m

e
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Slide credit: Hwu & Kirk

ti
m

e

Gen 1
Gen 2

The CUDA code stays the same and enjoys performance 

improvement while GPU hardware evolves. 



Key Messages:

◼ Programming model is the key success of Nvidia, rather 
than the GPU itself. 

◼ GPU has an order of magnitude higher memory bandwidth 
and compute power than CPU.

◼ Offloading a task to GPU pays off only when the task has 
enough compute intensity. 

◼ AI task needs compute-intensive accelerators, e.g., GPU 
and AI processor.
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Prog. Model 3: Multithreaded

150

for (i=0; i < N; i++)

    C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

This programming model (software) is called:

SPMD: Single Program Multiple Data

Executed on a SIMT machine (hardware)

Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different 
piece of data

❑ Each thread has its own context (i.e., can be 
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware

❑ A warp is essentially a SIMD operation formed by hardware!
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SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions → 

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 

independently on any type of scalar pipeline

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction → 

dynamically obtain and maximize benefits of SIMD processing
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Brief Review of GPU Architecture (I)

◼ Streaming Processor Array

❑ Tesla architecture (G80/GT200)
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Brief Review of GPU Architecture (II)

◼ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps
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NVIDIA Fermi architecture



Brief Review of GPU Architecture (III)

◼ Streaming Multiprocessors (SM) or Compute Units (CU)

❑ SIMD pipelines

◼ Streaming Processors (SP) or CUDA ”cores”

❑ Vector lanes

◼ Number of SMs x SPs across generations

❑ Tesla (2007): 30 x 8

❑ Fermi (2010): 16 x 32

❑ Kepler (2012): 15 x 192

❑ Maxwell (2014): 24 x 128

❑ Pascal (2016): 56 x 64

❑ Volta (2017): 80 x 64
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Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions → 

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction → 

dynamically obtain and maximize benefits of SIMD processing
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High-Level View of a GPU

158Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that 
execute the same instruction 
(on different data elements)

◼ Fine-grained multithreading

❑ No interlocking: One instruction per 
thread in pipeline at a time.

❑ Interleave warp execution to hide 
latencies

◼ Register values of all threads stay in 
register file

◼ FGMT enables long latency tolerance

❑ Millions of pixels 
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Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)

160

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



◼ Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3
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◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers
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Slide credit: Hwu & Kirk



From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps
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NVIDIA Fermi architecture



SPMD
◼ Single procedure/program, multiple data 

❑ This is a programming model rather than computer 
organization

◼ Each processing element executes the same procedure, except on 
different data elements

❑ Procedures can synchronize at certain points in program, e.g. barriers

◼ Essentially, multiple instruction streams execute the same 
program

❑ Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware
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Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation 
of full new warps
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Warp X

Warp Y

Warp Z



Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.

167

Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic



Clarification of Some GPU Terms
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Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step) 
on a SIMD functional unit

Pipelined 
functional unit /
Scalar pipeline

Streaming 
processor /
CUDA core

- Functional unit that executes instructions for one 
GPU thread

SIMD functional 
unit /
SIMD pipeline

Group of N 
streaming 
processors (e.g., 
N=8 in GTX 285, 
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for 
an entire warp

GPU core Streaming 
multiprocessor

Compute unit It contains one or more warp schedulers and one 
or several SIMD pipelines



Programming Model vs. Hardware Execution Model
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Hardware Programming Model Programming Model

Core

Streaming

 Multi-processor

GPU

CUDA core: Thread

Thread block (s)

Wrap

Thread blocks



NVIDIA H100 Block Diagram

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


NVIDIA H100 Core

48 TFLOPS Single Precision*

24 TFLOPS Double Precision*

800 TFLOPS (FP16, Tensor Cores)*

173
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

* Preliminary performance estimates

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


◼ Asynchronous memory copy with LDGSTS instruction vs. TMA

NVIDIA H100 Tensor Memory Accelerator

174https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

TMA unit reduces addressing overhead

A single thread per warp issues the 
TMA operation 

Support for different tensor layouts 
(1D-5D)

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


◼ Shared memory virtual address space distributed across the 
blocks of a cluster

◼ Load, store, and atomic operations to other SM’s shared memory

NVIDIA H100 Distributed Shared Memory

175https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Thread block clusters and distributed shared memory (DSMEM) are leveraged 
via cooperative_groups API

TMA unit supports copies across thread blocks in a cluster

Asynchronous transaction barriers

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

