Graphics Processing Units

Prof. Zeke Wang

Zhejiang University
July 2024

Where Are We?

Law: sum of soft lexity and Buge insn. [matrix mult),
: - sum of software complexityand ! modelin high-tevel
hardware complexity stays. ; Low precision (8, 16-hit), Provide operater L aries, nol m’l::; M\:t high
L . : Simple contral (in-order issue), direct programming on the chip. pecforma
" = Z Custem langeage (hard, library} i
Al }")1" TR 1 N
Al Chip

£ Goals: low mwl“ bigh péachwidth, momery |
: i apeess reduction. :
] latency, transparent | T .

wREH

4

"~ On-chip memory _
(i St memary
1, low memory latency,

2. memary acosss reduction,

)

Elulu) f Features: CISC, 5-stage pipeline
=r=é|1;]? | Mesl sssamplinu: memory/CPY has same speed.

CPU clock time (-0.5ns)

Memory

T HALA B

-$8q * random,
[App addr toDOR addr {CH, Sank Row, Cal)]

~

The von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

von Neumann Model: Two Key Properties

Von Neumann model is also called stored program computer
(instructions in memory).

von Neumann Model has two key properties:

o 1, Stored program
Instructions stored in a linear memory array
Memory is unified between instructions and data
0 The interpretation of a stored value depends on the control signals

o 2, Sequential instruction processing
One instruction processed (fetched, executed, completed) at a time
Program counter (instruction pointer) identifies the current instruction

Program counter is advanced sequentially except for control transfer
instructions

Where Are We?

Law: sum of soft l.'t d““E whn.(nmxntu.
: - Sum of software compiexity an :
' hardware complexity stays. i Low precision (8, 14-4i), Privide oparatar iraries; ot Easy to build -:-l i uaw
Simple contrat (in-order issae) irect programming on the chip. langeage,
L iz Custem langaage (hard, library) perfarmance.
NERFERSE ‘ AR :
Al Chip

wREH

{ Goals: low lex h'g péndwidth, memorv i
ceess reduction. :
latency transparent | :

4

{ < Un-ehip memory)

llwmhlmy. Custom hardware for a particular]
v " g

2 memary acoess reduction, m. Lower frequency.

Long memory latency (-100ns) vs '
CPU clock time (~0.5ns)

Memory

1 AL B

m;m
[App 244 to DR addr (CH, Bank, Row, Col

A Single-Cycle Microarchitecture
A Closer L.ook

Single-cycle Machine

AS’

Combinational
Logic

Sequential |

Logic
(State)

AS

AS: Architectural State

A Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to execute.
= Only combinational logic is used to implement instruction

execution.
a No intermediate, programmer-invisible state upadates

AS = Architectural (programmer visible) state
at the beginninﬁ‘ a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

Multi-Cycle Microarchitectures

Where Are We?

Law: sum of soft l.'t d““E whn.(nmxntu.
: - Sum of software compiexity an :
' hardware complexity stays. i Low precision (8, 14-4i), Privide oparatar iraries; ot Easy to build -:-l i uaw
Simple contrat (in-order issae) irect programming on the chip. langeage,
L iz Custem langaage (hard, library) perfarmance.
NERFERSE ‘ AR :
Al Chip

{ Goals: low lex h'g péndwidth, memorv i
ceess reduction. :
latency transparent | :

RGN r
/“"‘ =l
i On-chip memary 3
1low latency, Custom hardware for a particular
Lm";wﬁm st ovs o,]
[ALU and data insns
separated f
Long memory latency (-100ns) vs '
CPU clock time (-0.5ns)
gE LT |
‘ Memory s Aol oo SO = - \ Hartrare Descrintion Lonauage
ey 1A e [r-l-mumgi-mmm}
[App ad 0 D0R a (€4, Bank Row, Lol] Von Neumann Architecture [sy] A

10

Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea of multi-cycle CPU:
o Decrease clock cycle time

o Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different

11

The “Process Instruction” Step of Multi-Cycle CPU

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification

o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

Single-cycle: AS - AS’ (transform AS to AS’ in a single clock cycle)

Multi-cycle: AS > AS+MS1 > AS+MS2 - AS+MS3 - AS’ (take
multiple clock cycles to transform AS to AS’)

12

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

¢

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

13

Where Are We?

} Buffer (manual contrad,
Law: sum of software complexityand | Iphnﬁ-[:hut?.
hard lexity st : Low precision (8, 16-hit),
............ (Oae ooy sy, Simple contral(n-order issue),

HREMH

| Goals: low NWIK hig péndwidth, memory |
: ! apeess reduction. :
: latency, transparent | :

Sl

T Crtotin
A o mry sy, Parallelism issue: low throughput : Hitos gl]
2. memary acosss reduction, J dmeoeessmmmeeesaanneameneneneears 2 e “m‘mmn programming
[A and datainsns Ienle)_ (Featares:CISC, 5-stage pipeline .]
- T/ T aTE e e
Long memory latency (-100ns) is. ’ Pyels | Lrlelelulw] " Different insn. has different cycles—>
CPU clock time (~0.5ns) l m:h .) f S—]
A B ‘ ey SingleCycleCPU(regn) = \ i Botoaie T
589 random, sk S [mmmmMm} :

14

Can We Use the Idle Hardware to Improve Concurrency?

Goal: More concurrency - Higher instruction throughput
(i.e., more “work” completed in one cycle)

Key Idea: When an instruction is using some resources in

its processing phase, process other instructions on idle

resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

15

Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea of pipelining:
o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure enough hardware resources to process one instruction in
each stage

o Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)

16

Base

The Laundry Analogy: Pipeline

) 6 PM 7 8 9 10 11 12 1 2 AM
Time

Task
order
])
[o] <
/)
B @ —
[o]
[/
¢ EJI =
—) =
D e
v O

= “place one dirty load of clothes in the washer”,

= “when the washer is finished, place the wet load in the dryer”,
= “when the dryer is finished, take out the dry load and fold”,

= “when folding is finished, put the clothes away”.

Observations:
1, steps to do a load are sequentially dependent,
2, different steps do not share resources,
3, no dependence between different loads.

17

d on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple L.oads of Laundry

) 6 PM 7 8 9 10 11 12 1 2 AM
T'me_ﬁ_ﬁ_m_ﬁ_ﬁ_'
Task
order

© o
7
 —)
7

A
oEM
B go=l_
c nEE!
D

Sl .
—
—
EI

- 4 loads of laundry in parallel
- no additional resources

- throughput increased by 4X
- latency per load is the same

Based on o

riginal figure

from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

18

Example: |

Hxecution of Four Independent ADDs

= Multi-cycle: 4 cycles per instruction

F

D

E

W

F|D|E |W

= Pi

F

W

m

E
D
F

m

> Time

pelined: 4 cycles per 4 instructions (steady state)

1 instruction completed per cycle

> Time

19

Where Are We?

] Buifer (manual control),
Law: sum of sofiware complexity and | Huge insn. (matrix mult), oo o bl el i o
hardware complexity stays. '-l_'W precision (3_- 16-bit), _ Provide operator libraries, not asylaung:Iageml‘)]u:wIiI;h Ihglgh Ee Data Parallel,
' Simple conirol (in-order issue), direct programming on the chip. 2 Model parallel,
Al -)3[» 1_7 % Q}‘E Custom language (hard, library) performance. Pipeline Parallel
NN — 1N £ . . .
Al Chip Al runtime Al framework Parallel Training

For multi-cycle
execution, false
dependency,

Performance as L1, size
as |2

MES|, for 0S,
Big overhead

One insn. multi
data

2-thread on
acore

Multiple complex
cores

Out-of-order
execution

Coarsed-grained

Many simple cores

[Manual, small footprint] Do morg within an insn, Mulii threads share CU. ‘

**HPC, AI™]

Scratchpad RAM (Al chip, ‘ Intra-instruction ’ ‘ Inter-Instruction ’ Inter-thread Inter-core
1k % 45 Hy GPU) Parallelism Parallelism (CPU) Parallelism Parallelism
AN E boals: low mm Goals: high bdndwidth, memory
lat) ¢ i N aceess reduction.
atency, transparent | "I g e S —
................ . ~-..._--.._____-.- !,-’ --."'_'_____........---....._________..
. l.ocal [i:y? ------- U l!-c!.l!p m_e_mu,r.y """""""""""" ' e i i -. [] at a ﬂ ow "
i L ! Verilog, spatial Custom hardware for a particula
o J | Parallelsm issue: low throughput_~ ey T B e
= ! ' on Neumann issue L Excellent for distributed sysiems.
e N
ALU and data insns P [Flolefulw] Features: CISC, 5-stage pipeline
[separated N Pipeline iPU (Frec: 1ow) ﬂg“ﬂg n Ideal assumption: memory/CPU has same speed.)
: "" I
ong memory latency (~100ns) Vs. * ’ Multi-Cycle CPU ‘ Flolelmlw T [Different insn. has different cycles—>]
ime (~ higher frequency.
CPU clock time (~0.5ns) T o e TwTw
] /Vk Q v . nsn.
A AL ﬁk‘ ‘ Single-Cycle CPU (Freq: M) ‘ : — -
Memor Hardware Description Language
y
seq> random T ISA Finite state machine (FSM), Datapath, work
' . Stored ! in parallel
App addr to DOR addr (CH, Bank Row, Cal) Von Neumann Archltecture Sequentiarir:strurs‘?i;:r:xecution]

20

Agenda for Today
‘ Why GPU? ‘

Hardware Execution Model

Programming Model
o SISD vs. SIMD vs. SPMD
o GPU Programming Example

Advance
SIMT (Hardware) & Warp (Software)

21

Why GPU?

Need More Computing Power.

OpenAl: Compute Power Needed by NN Model

One Forward Pass of Model: - 19 114M 196B

“GPT-3” 175B ~250T

1,000,000.00
100,000.00
10,000.00
1,000.00
100.00
10.00

1.00

0.10

0.01

0.00
—(One-cycle CPCU =——Pipeline CPU ==———SIMD CPU —GPU VGG19 = = GPT-3

Throughput (GOPs/s)

CPU vs GPU: Compute Perspective

DRAM

= CPU: = GPU:
o Few complex cores a Lots of simple cores
o Larger cache for low memory o Small cache for low memory
latency latency

o Large and slow memory o Small and fast memory

24

State-of-the-art CPU GPU and FPGA

CPU (AMD 2.8 (FP32)

! / 512GB 32.0GB/s
Threadrippe | 64 (128) 1.4 (FP64) (80GB/s) (PCle 4.0 4(16) No

r 3995WX) '
67 (FP32),

GPU (Nvidia 34 (FP64), 80GB 64.0GB/s

H100) 18432 (128K)| 989 (Fp32, Tensor), (3350GB/s) | (PCle5.0x16) | O
1979 (FP16, Tensor)
9,024
FPGA ! 40GB 16.0GB/s Yes
(U280) (ﬁaﬁ’; LA () (460GB/s) (PCle 4.0 X8)

Relationship between CPU and GPU

CPU GPU

More cores =2 More trouble

Challenge: How to manipulate them?

GPU Computing

Key Idea:

o Computation is offloaded to the GPU

Three steps:

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)

CPU
cores

CPU
memory

GPU
memory

Matrix

Matrix

GPU
cores

28

Programming Model: CPU and GPU

= CPU-GPU Co-processing:

o CPU: Sequential or modestly parallel sections
o GPU: Massively parallel sections

Serial Code (CPU):

\\\\\\\ \\\\\\\\ OO \\\\\\\\

Parallel Kernel (GPU): D [S || SIS

QLR PL(E ’(«(< PLC(G ’(" R (G ’(«(<

KernelA<<<nBlk, nThr>>>(args) ; Ssssn | s | | s

Serial Code (CPU):

. SIS SISTTTNN \\\\\\\\\\ SISTTTNNH
Parallel Kernel (GPU): S
KernelB<<<nBlk , nThr>>> (args) : S8 SSSSSSSSS SSSSSSSSSS . . SSSSSSSSS

29

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
o Execution Model (Hardware)

30

Programming Model vs. Hardware Execution Model

Programming Model: how the programmer expresses the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Hardware Execution Model: how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Discussion: Execution Model can be very different from
Programming Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

31

GPU: Programming Model vs. Hardware Execution Model

Hardware Execution Model CUDA Programming Model

- [l @ ewe
Streaming Thread block 22222222

Multi-processor
CUDA core] Thread 2

32

Agenda for Today
Where is GPU? & Key Message

Hardware Execution Model ‘

Programming Model
o SISD vs. SIMD vs. SPMD
o GPU Programming Example

Advance
SIMT (Hardware) & Warp (Software)

33

A Many-core GPU
(Hardware Execution Model)

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors (CUDA cores)
a “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

NVIDIA, “"NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper,” 2008.

Slide credit: Kayvon Fatahalian 35

NVIDIA GeForce GTX 285 “core” (SM)

64 KB of storage
for thread contexts

= multiply-add
= multiply

o = SIMD functional unit, control
shared across 8 units

(registers)

= instruction stream decode

= execution context storage

Slide credit: Kayvon Fatahalian

36

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved

= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

37

NVIDIA GeForce GTX 285

[=T=])| (ST=]{ [<T=] | =[=]|

| [=]=]| [=]=] | [=[=]{ [=]=]|

 [=]=]|[=]=] [=[=]| [=]=]|

[=[=]] (ST=]{ [ST=]{ [ST=])

| [T=] | (=T (]| (=]

=[] | (=[] | (S[=] | (=[=],

INEREnEEER

[=T=]| (ST=]| [<T=] | T=]|

| [=[=] | [=]=]{ [=]=] | [=[=]]

| [=]=]) [=]=]{[=[=]1| [=1=]]

 [=]=]{[=I=] [=I=] | [=]=]|

| [S[=] | [wT] | [wT] | [wT]|

=[] | ([=] | (S[=] (=[=],

HERNEDEEER

CLrrr--T177]

CLiir---T770]

|[=T=] | [=[=]}| [=T=]{ [=I=1 ¥ [=T=] | [=[=]) (== E) EE] =E EE EE) (08][oo||oo||oo|| | [Oe][0s][os][oe] | | (0] [oe][oa][oa]
 [w]=] | [=]=]) [=[=]1| [=I=] {§ § =T=]| [=T=]1| [=I=1{ [=I=] i [=I=] | [=I=] | [=I=] | =T=]] | [n]=] | [=]=]{ [=[=1) [=T=1 |)i [=[=] | =I=] | == | == EE EE EEH EE)|
-t e -1 ety I -1t
[=T=]| (=[]} [=T=]{ [=I=1 ¥ [=T=] | [=T=]) [=T=]{ [sI=1§) (=T=]) [=[=1}| [sT=]{ [=]=]] =] EE EE EE I EE| EE| EE EE Y EE EE EE EE
EE|EE|EE | EE N EE EE | EE EE N EE EE EE] EEEE|EE|EEEE EE EE EEEE EE EE EE
et r---Trr iy ferrr---11rti -ty I -1t
(0o][og||oo||oa|| | [oe][0s][os][oa] | | (o] [oa][oa][oa] EEEEEEEEE EE EE EE N EE EE EE EE
(0o][og||oo||oa|| | [Oe][0s][0s][o] | | (o] [oa][oa][oa] EEEEE EE EE EE EE EEINEE EE EE EE

CLifr--T101]

INNEEn R

CLiff--T111]

INNEEn R

 [=]=]{[=]=] [=[=]{ [=]=]|

| [T=] [T [wT=] | [<T]|

=[] | I=] | [S[=] | [=])

 [=]=]{[=]=] [=[=]{ [=]=]|

| [=]=]{[=I=]{[=[=]| [=]=]|

 [=]=]|[=]=] [=[=]| [=]=]|

INNEED R

 [=]=]{[=I=] [=I=] | [=]=]|

| [=[=]|[=]=]|[=[=]| [=]=]|

 [=]=]{[=]=] [=[=] | [=]=]|

 [=]=] | [=]=] [=[=] | [=]=]|

[=[=]|[==1|[=I=]|[=]=]|

[=[=]|[=I=]|[=I=] | [=]=]|

CLrrr--T111]

INNEEn R

30 cores on the GTX 285: 30K t

Nreads

Slide credit: Kayvon Fatahalian

38

Evolution ot NVIDIA GPUs: Compute

H#HFunctional Units

8000

7000

6000

5000

4000

3000

2000

1000

=@=Functional units (stream processors)

-9-GFLOPS

GTX 285
(2009)

GTX 480
(2010)

GTX 780
(2013)

GTX 980
(2014)

P100 (2016)

V100 (2017)

A100 (2020)

25000.0

20000.0

15000.0

10000.0

5000.0

0.0

GFLOPS

39

NVIDIA V100

NVIDIA-speak:
o 5120 stream processors (CUDA cores)
a “SIMT execution”

Generic speak:
o 80 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning

NVIDIA, “"NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

40

NVIDIA V100 Block Diagram

PCI Express 3.0 Host Inmerface

Moemary Controfies

https://devblogs.nvidia.com/inside-volta/

80 cores on the V100

NVIDIA A100

= NVIDIA-speak:
0 6912 stream processors (CUDA cores)
a “SIMT execution” '

= Generic speak:
o 108 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning
= Support for sparsity
= New floating point data type (TF32)

s https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/ 42

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

i

|

i

i

£
2
5
o
>
¥
g
L
=
3
s
£
5
s
H
8
3
g
5]
13
g
3
3
-
5
S
>
3
t
Ml

i
i

JANo) Aouwsyy | Japonuog Louky | ejoeeed Loweyy | sa0guend Aaoaa | Jaoljued Louky

i

Memory Contraber Memory Conmroder

sagonued Aowewy

-
-

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache

NVIDIA H100

= NVIDIA-speak:

= Generic speak:

o 8448 stream processors (CUDA cores)
a “SIMT execution”

o 132 cores
a 64 SIMD functional units per core

a Tensor cores for Machine Learning
= Support for sparsity
= Support for transformer

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

44

NVIDIA H100 Block Diagram

HOPPER H100 TENSOR CORE GPU

80B Transistors, TSMC 4N

2"d Gen Multi-Instance GPU
Confidential Computing
PCle Gen5

World’s First HBM3 DRAM

l New Memory System
Larger 50MB L2

132 SMs 4th Gen NVLink

2x Performance per Clock 900 GB/s total bandwidth
4th Gen Tensor Core New SHARP support
Thread Block Clusters NVLink Network

“ANVIDIA

45

GPU Trend: H100 vs. A100

H100

4000T

2000T

1000T

60T

3TB/s

80GB

A100

666T

666T

333T

20T

2TB/s

80GB

Compute power scales well.

GPU memory capacity does not scale well.

46

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming
model)

o Each thread executes the same code but operates a
different piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

47

Agenda for Today
Where is GPU? & Key Message

Hardware Execution Model

Programming Model

|2 SISD vs. SIMD vs. SPMD|
o GPU Programming Example

Advance
SIMT (Hardware) & Warp (Software)

48

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)

Scalar Sequential Code C[i] = A[i] + B[il;

Let's examine three programming options
i to exploit instruction-level parallelism
present in this sequential code:

1. Sequential (SISD)
2. Data-Parallel (SIMD)

3. Multithreaded (SPMD)

49

Prog. Model 1: Sequential (SISD) ™ ¢i2) = atsy + s1i1;

= Can be executed on thee processors:

Scalar Sequential Code

= 1, Pipelined processor

= 2, Out-of-order execution processor

o Independent instructions executed
when ready

o Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= 3, Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

50

or (i=0; i < N; i++)

Prog. Model 2: Data Parallel (SIMD)f Cli] = A[L] + Bil;

Vectorized Code

Scalar Sequential Code

VLD A->V1

VLD B—>V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

51

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = ca1'= a1 + a1

Sca/ar Sequential Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

52

i < N; i++)

Proo. Model 3: Multithreaded ™™ cia1 = ati) + a1i1,
g

Realization: Each iteration is independent

This programming model (software) is called:

SPMD: Single Program Multiple Data

53

SPMD

SPMD: Single procedure/program, multiple data

o This is a programming model rather than computer
organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Key Idea of SPMD: multiple instruction streams execute the
same program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware
54

Agenda for Today

Where is GPU? & Key Message
Hardware Execution Model

Programming Model
o SISD vs. SIMD vs. SPMD
o GPU Programming Example

Advance
SIMT (Hardware) & Warp (Software)

55

CUDA/OpenCL Programming Model

Single Program Multiple Data (SPMD), e.g., CUDA

o Bulk synchronous programming: Global (coarse-grain)
synchronization between kernels

The device (typically GPU) executes CUDA kernels
o Grid
o Thread Block

CUDA runtime schedules at granularity of thread block.

A thread block is a programming abstraction that represents a
group of threads that can be executed in parallel.

Within a block, shared memory, and synchronization.
o Thread
A thread corresponds to an iteration.

56

GPU: Programming Model vs. Hardware Execution Model

Hardware Execution Model CUDA Programming Model

- [l @ ewe
Streaming Thread block 22222222

Multi-processor
CUDA core] Thread 2

57

CUDA: Memory Hierarchy

Block (0, 0)

Registers

!

Registers

!

Block (1, 0)

Registers

!

Registers

!

é Thread (0, 0)

é Thread (1, 0)

é Thread (0, 0)

é Thread (1, 0)

58

Traditional Program Structure in CUDA

Function prototypes

float serialFunction (..);

__global void kernel(..);

main ()

o 1) Allocate memory space on the device — cudaMalloc (&d_in, bytes);

o 2) Transfer data from host to device — cudaMemCpy (d_in, h in, ..);

o 3) Execution configuration setup: #blocks and #threads

o 4) Kernel call = kernel<<<execution configuration>>>(args..);

o 5) Transfer results from device to host — cudaMemCpy (h_out, d out, ..);

Repeat as needed

Kernel - global void kernel (type args,..)

o Automatic variables transparently assigned to registers
o Shared memory: shared

o Intra-block synchronization: syncthreads () ;

Slide credit: Hwu & Kirk

59

CUDA Programming [Language

= Memory allocation
cudaMalloc ((void**) &d in, #bytes);

= Memory copy
cudaMemcpy (d _in, h in, #bytes, cudaMemcpyHostToDevice) ;

= Kernel launch

kernel<<< #blocks, #threads >>>(args);

= Memory deallocation

cudaFree (d 1in);

= Explicit synchronization

cudaDeviceSynchronize () ;

60

First GPU Example: Vector Addition (I)

GPU thread to each element-wise addition

= Key Idea: one

First GPU Example: Vector Addition (1)

= A grid: the whole set of threads
= We need a way to assign threads to GPU cores

UL

First GPU Example: Vector Addition (I11)

= We group threads into blocks blockDim = 4

blockldx =0 blockldx = 1 blockldx = 2 blockldx = 3

threadldx = 0 threadldx = 1 threadldx = 2 threadldx = 2

05

GPU: Programming Model vs. Hardware Execution Model

Hardware Execution Model CUDA Programming Model

- [l @ ewe
Streaming Thread block 22222222

Multi-processor
CUDA core] Thread 2

04

Host Code Example: Vector Addition

void vecadd(float* A, float* B, float* C, int N) {

//1, Allocate GPU memory
float *A_d, *B_d, *C_d;

cudaMalloc((void**) &A_d, N* (float));
cudaMalloc((void**) &B_d, N* (float));
cudaMalloc((void**) &C_d, N* (float));

//2, Copy data to GPU memory

cudamemcpy(A_d, A, N* (float),);
cudaMemcpy(B_d, B, N* (float),);

//3, Perform computation on GPU

const unsigned int numThreadsPerBlock = :
const unsigned int numBlocks = N/numThreadsPerBlock;
vecadd_kernel<<<numBlocks, numThreadspPerBlock>>>(A_d, B_d, C_d, N);

//4, Copy data from GPU memory
cudamemcpy(C, C_d, N* (float),);

//5, Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(Cc_d);

65

Slide credit: 1zzat El Hajj

Kernel Code Example: Vector Addition

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
int 1 = blockDim.x*blockIdx.x + threadIdx.x;

cli]l = A[1] + B[1];

b lockDim: block dimension

blockIdx: block index within a grid

threadIdx: thread index within a block

. . ; (610)
Slide credit: Izzat El Hajj

Boundary Conditions

Question: What if the size of the input is not a multiple of
the number of threads per block?

o Solution: use the ceiling to launch extra threads then omit
the threads after the boundary

Host code:

const unsigned int numBlocks = (N +numThreadsPerBlock - 1)/numThreadsPerBlock;

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

Kernel code:

__global__ void vecadd_kernel (float* A, float* B, float* C, int N) {
int 1 = blockDim.x*blockIdx.x + threadIdx.x;

1T < N) {
cli]l = A[1] + B[1];
}

67

Sample GPU Program: Matrix Multiplication

CPU Program GPU Program

__global __ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 68

Indexing and Memory Access

= Images are 2D data structures
o height x width
o Image[j][i], where 0 < j < height, and 0 < i < width

Image[0][1]
\‘ 0 1 2 3 4 5 6 7

\$

0

Image[1][2] —

Image Layout in Memory

= Row-major layout
= Image[j][i] = Image[j x width + i]

l NENN BN BN EEEEE EEEEEEE EEEEEEEEEEN

\
| Image[0][1] = Image[0 x 8 + 1]
Stride = width
Image[1][2] = Image[l x 8 + 2]

70

Indexing and Memory Access: 1D Grid

= One GPU thread per pixel
s Grid of Blocks of Threads

0 gridDim.x, blockDim.x

0 blockIdx.x, threadIdx.x
blockIdx.x Block O

Thread O
Thread 1
Thread 2
Thread 3

threadIdx.x

Block O

6*4+1=25

blockIdx.x * blockDim.x +
threadIdx.x

Agenda for Today
Where is GPU? & Key Message

Hardware Execution Model

Programming Model
o SISD vs. SIMD vs. SPMD
o GPU Programming Example

Advance
| SIMT (Hardware) & Warp (Software) |

72

GPU: Programming Model vs. Hardware Execution Model

Hardware Execution Model

...

] -
Streamin =0
: 9 -
Multi-processor —
SIMT I
CUDA core []

CUDA Programming Model

. 22222 22222 22222
Thread block 22222222

Wrap

Thread 2

73

SIMT (Hardware) & Warp (Software)

= SIMT: Single Instruction Multiple Thread
o More precisely, SIMD (Single Instruction Multiple Data)
o Key Feature: 16 CUDA cores in a SM are executed in a lock step.

= Warp:
o A warp, a basic execution unit, consists of 32 consecutive threads
o A thread block is divided into warps for SIMT execution.

Block O’s warps Block 1’s warps Block 2’s warps
]]]
tO\\t;l\EE\R\t 31 tO\\t}\Ez«ixt 31 tO\\t}\EZ\Qi\t 31
p > p > p >)>)>))]
H &R | H | &L | Y |

74

Wwhy SIMT and Warp?

for (i=0; i < N; i++)

HOW to Form Warps? C[i] = A[i] + B[i];

~N

Vs

Iter. 32

(i.e., at the same PC)

76

Mapping Warps on a SIMT Hardware

Warp:
a A thread block is divided into warps.
o A warp executes the same instruction on different data elements

Lindholm et al., "

SIMT Pipeline:
o 16 CUDA cores are executed in a lock step to serve each warp.
lnIE=E e el Thread Warp 0
Scalar | Scalar | Scalar Scalar y Thread Warp 8
Thread |Thread |Thread [« « « |Thread //' :
0 1 2 LN g Thread Warp 7
\ 4
SIMT Pipeline

," IEEE Micro 2008.

77

. . for (i=0; i < N; i++)
GPU Execution with Warps

C[i] = A[i] + B[i];

= Assume: a warp consists of 32 threads
= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps.

Warp 20 at PC X+2

Iter. Iter.
29*32 + 1 20*32 + 2

78

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
00 0 e A A A A A
time oo o000 AAAAAAVYZ fame e mEEE
00 0 e AAAAAAA A EEEEEE
0100 |0|0 A A A A AAAANEEEEEEDE
0100 |0|0 AAAA A A \|HEEEEEEENE
O|0|0|0|0 AAAAALVE_IIIIIIIII
0100 |0|0 AAAAAAA A EEE EEEE
A A AAAAAAINEEEEEEDE
H EEEENENEN

I Warp issue >

Slide credit: Krste Asanovic 79

SIMT iIs not SIMD!

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions -2
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2
dynamically obtain and maximize benefits of SIMD processing

SIMT Code vs. SIMD Code

CPU scalar code

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + Bii];

¥
// there are 25000 loops with SIMD=4

// there are 100000 threads
__global__ void KernelFunction(...) { v_A = vec_load (A);

int tid = blockDim.x * blockIdx.x + threadIdx.x; v_B = vec_load (B);

int varA = aaftid]; v_C = vec_add(v_A, v_B);

int varB = bbltid]; Vec_store(v_C, C)

C[tid] = varA + varB;
¥ }

CUDA code CPU vector code

Slide credit: Hyesoon Kim

82

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know vector
length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
83

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread
3

Thread
4

84

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1 1 1

o Groups scalar threads

into warps % 11111111
_ patnal | | | |
cl)scr?ullgt\‘/vﬂlemetrr?rzgdc: Patﬂ 1 1 1 1

inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

Slide credit: Tor Aamodt

SIMD Utilization

= Intra-warp divergence

Compute

Compute (threadIdx.x) ;

if (threadIdx.x % 2 == 0) {
Do this(threadldx.x);

}

else{
Do that (threadIdx.x);
}

Else

Increasing SIMD Utilization

= Divergence-free execution

Compute

Compute (threadIdx.x) ;
if (threadIdx.x < 32){
Do this(threadIdx.x * 2);

}

LN it
Do that ((threadIdx.x%32) *2+1);

}

Yyvyrryvvrvry

Else

YYYvyYrrry

87

Vector Reduction: Naive Mapping (I)

Slide credit: Hwu & Kirk 88

Vector Reduction: Naive Mapping (1I)

= Program with low SIMD utilization

__shared float partialSum][]
unsigned int t = threadIldx.x;
for (int stride = 1; stride < blockDim.x; stride *= 2) {

__syncthreads () ;

if (t $ (2*stride) == 0)
partialSum[t] += partialSum|[t + stride];

89

Divergence-Free Mapping (1)

= All active threads belong to the same warp

Thread 0 Thread1l Thread2 --- Thread 14 Thread 15

iterations

Slide credit: Hwu & Kirk

90

Divergence-Free Mapping (11)

= Program with high SIMD utilization

shared float partialSum/[]

unsigned int t = threadIldx.x;

for (int stride = blockDim.x; stride > 0; stride >> 1) {

__syncthreads () ;

if (t < stride)
partialSum[t] += partialSum|[t + stride];

91

GPU Memories

Memory in the GPU Architecture

=1 cycle

Shared
=5 cycles L1 Cache

Shared
Memory

L2 Cache

Shared

e L1 Cache

=500 cycles Global Memory

Slide credit: Izzat El Hajj

Memory in the GPU Architecture

=1 cycle

=5 cycles S L1 Cache S SLELCE L1 Cache
emory Memory Memory

Direct cop) L2 Cache 50 MB

=500 cycles Global Memory 3 TB/s 80 GB

Slide credit: Izzat El Hajj

NVIDIA V100 & A100 Memory Hierarchy

= Example of data movement between GPU global memory
(DRAM) and GPU cores.

Tensor Cores

Load-Shared
(2x)

i Tensor Cores

(L‘&?d-Shared 2 reads o -TRE -

5 reads i
1 write

e

Store-Shared Reser\;ed for

in-flight data

Load-Global-
Store-Shared

Reserved for .4
in-flight data ™~

Load-Global (Async-Copy)
I L2 | | L2 |
[DrRam__| @ [_oRAM | @ A100 feature:
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy Direct copy from L2
instruction that bypasses L1 cache and register file (RF). Additionally, A100’s more efficient Tensor to scratch pad,

Cores reduce shared memory (SMEM) loads.

bypassing L1 and
register file.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper. pdf 95

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

CUDA Variable Type Qualitiers

Variable declaration Memory | Scope Lifetime
int LocalVar; register | thread thread
int localArr|[N]; global | thread thread

__device =~ shared int SharedVar; shared block block
__device int GlobalVar; global grid application
__device = constant int ConstantVar; constant grid app|icati0n

device is optional when used with shared ,or constant

Recall cudaMalloc (...) allocates memory from the host
o Constant memory can also be allocated and initialized from the host

Automatic variables without any qualifier reside in a register
o Except arrays that reside in global memory

96

Memory Hierarchy in CUDA Programs

Block (0, 0) Block (1, 0)

Registers

! !

é Thread (0, 0) é Thread (1, 0)

Registers Registers

!

é Thread (0, 0)

Registers

!

é Thread (1, 0)

Nvidia’s Success: Transparent Scalability

time

= Hardware is free to schedule thread blocks

Gen 1l

Device

Gen 2

Device

Each block can execute in any order relative to other blocks.

'

~

time

The CUDA code stays the same and enjoys performance
improvement while GPU hardware evolves.

Slide credit;: Hwu & Kirk

98

Key Messages:

Programming model is the key success of Nvidia, rather
than the GPU itself.

GPU has an order of magnitude higher memory bandwidth
and compute power than CPU.

Offloading a task to GPU pays off only when the task has
enough compute intensity.

Al task needs compute-intensive accelerators, e.g., GPU
and Al processor.

99

Recall: Comparison ot Memories

Capacity Bandwidth Latency

SRAM\ -10mB \ SRAM /~1TB/s SRAM \~1ns

/ HBM \~1OGB \ HBM /1OOGB/s / HBM \~100ns

/ DRAM \100@5 \ DRAM / N / SRAN \100ns
/ SSD \~1TB \ SSD /~1GB/S / SSD \lus

/ DISK \10“3 DISK /-10mB/s / DISK \~lms

100

The DRAM Subsystem
The Top-Down View

DRAM Subsystem Organization

= Channel

= DIMM

= Rank

= Bank

= Row/Column

102

The DRAM Subsystem

“Channel” DIMM (Dual in-line memory module)

Processor

Memory channel Memory channel

103

Breaking down a DIMM (module)

SIDE

| 4.00 \ ‘<_

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

104

Breaking down a Rank

<56:63>

Data <0:63>

105

Breaking down a Chip

106

Inside a DRAM Chip

Bitline ~
- Wordline
Subarray-~~ DRAM Cells
a)
.|l Wordline
(2D Array of DRAlY! Cells) Access
Tt..L <« -~ | Transistor
) Q
| ‘ £
Sense Amplifiers -} \ Q
= 1
Row Buffer ----7 - - /
‘. Storage
Capacitor

DRAM Chips -

DRAM Module 8

DRAM Cell Operation

wordline

— Y2 Vpp

bitline

dCcess

storage _
transistor

capacitor

enable D

sense
amplifier

1. ACTIVATE (ACT)
2. READ/WRITE

3. PRECHARGE (PRE)

C I I I

DRAM Cell Operation - ACTIVATE

wordline
1. Raise wordline —t 1y

dCCeEsSS

storage _
transistor

capacitor
8. Capacitor sharge is restored
charge with bitline
4. Amplify deviation
in the bitline

Myp+ &

bitline

3. Enable o rl \
. enable
sense amplifier sense
amplifier

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

6. Row buffer stores the cell value

10

DRAM Cell Operation — READ/WRITE

wordline
- Voo
bitline
storage o 1. ACTIVATE (ACT)
capacitor
2. READ/WRITE
3. PRECHARGE (PRE)
enable - = Read/Write the value

sense latched in sense amplifier
amplifier

11

DRAM Cell Operation - PRECHARGE

1. Lower wordline

wordline -t Y2 Vpp 2.Precharge bitline for next access
bitline
access
t 1 ACTIVATE (ACT)
CZ :;:igt’rgr transistor 1. ACTIVATE (ACT)
2. READ/WRITE
3. PRECHARGE (PRE)
3. Disable
sense amplifier €nable -
sense
amplifier

12

DRAM Bank Operation

Access Address:
(Row 0O, Column 0) Columns
(Row O, Column 1)
(Row 0, Column 85)

(Row 1, Column 0) %
o __________________ m
Row address @ —— QISR S S A S o
=
; ________________________ 7))
@)
0 o I e U S N U

Row Buffer EONFLICT !

Column address EIIS—»\ Column mux/

l

Data

112

Long Global Memory
Access Latency

How to optimize global memory access?

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

L 2

Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

v

I-Fetch
v

Decode

NV [« 2 [«

<NV iq 4 [«

NV ¢ 3 €

D-Cache

'_

Al Hit?i

$ Data

v

Writeback

Thread Warp 1
Thread Warp 2

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

| Thread Warp 6 |

115

Latency Hiding and Occupancy

= FGMT can hide long latency operations (e.g., memory accesses)

= Occupancy: ratio of active warps to the maximum number of
warps per GPU core

"
time:

It i

2 active warps

Instruction 3

Instruction 2

Instruction 3
Instruction 4

Instruction £

.
time

(Long latency!

-

i

4 active warps

Instruction 3

Instruction 2

Warp 0
Instruction *

Instruction 4

Instruction - (Long latency,

Instruction 3

Instruction £

116

Memory Coalescing (1)

Memory Coalescing:

o When threads in the same warp access consecutive memory
locations in the same burst, the accesses can be combined
and served by one burst

2 One DRAM transaction is needed

If threads in the same warp access locations not in the
same burst, accesses cannot be combined

o Multiple transactions are needed
o Takes longer to service data to the warp
o Sometimes called memory divergence

117

Slide credit: 1zzat El Hajj

Memory Coalescing (11

= When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

= Peak bandwidth utilization occurs when all threads in a

warp access one cache line (or several consecutive cache
lines)

Not coalesced Coalesced

Thread 1

Thread > ‘ ‘

Slide credit: Hwu & Kirk

118

Uncoalesced Memory Accesses

Access ~TMoIMTIMZI™EY
direction [VSHYVENYEN VS
In Kernel
code

Time Period [L

Slide credit: Hwu & Kirk

119

Coalesced Memory Accesses

Access
direction
In Kernel
code

Time Period 1|| Time Period 2
T, T, T3 T,|| T, T, T3 Ty

dRRRRANE

|\/IO,O

Slide credit: Hwu & Kirk

120

Shared Memory

Shared memory is an interleaved (banked) memory
o Each bank can service one address per cycle

Typically, 32 banks in NVIDIA GPUs

o Successive 32-bit words are assigned to successive banks
Bank = Address % 32

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

121

Shared Memory Bank Conflicts (I)

= Bank conflict free

y 7 y 7
R ¥ ganko | M Thread 0 o
itk S Bank1 | Thread 1 " Bank1 |
— % gank 2 | IRITHica02 T
TTernE % 5ank3 | Thread 3 " Bank3 |,
e % sanks | Thread 4 " Bank4 |
— el L Banks |
Ee==—ye S Bank6 | Thread 6 “Bank6 |
e % gank 7 | RN DBl

Linear addressing: stride = 1 Random addressing 1:1

Thread 15 Bank 15

4 Bank 15

Slide credit: Hwu & Kirk 122

Shared Memory Bank Conflicts (1I)

= N-way bank conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5 3

Thread 6 >

Thread 7 3

Thread O
Thread 1
Thread 2
Thread 3

Thread 8
Thread 9
Thread 10
Thread 11

Thread 15

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk 123

Use Shared Memory to Improve Coalescing

Original
Access
Pattern
Copy into
scratchpad
memory
Tiled
Access
Pattern P?”‘F’”’?
. multiplication
\ with scratchpad
! values

Slide credit: Hwu & Kirk 124

Reducing Shared Memory Bank Conflicts

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

If strided accesses are needed, some optimization
techniques can help
o Padding

o Randomized mapping
Rau, “Pseudo-randomly interleaved memory,” ISCA 1991

o Hash functions

V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

125

Data Reuse

= Data reuse:
o Same memory locations accessed by neighboring threads

O
-

9 elements per thread

for (int 1 = 0; i < 3; i++4){
for (int J = 0; J < 3; Jj++){
sum += gauss[i][j] * Imagel[(i+row-1)*width + (j+col-1)];
}

126

Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

(L_SIZE+2)?/L_SIZE?
elements per thread

__shared int 1 data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory 1 data
__syncthreads() ;
for (int 1 = 0; 1 < 3; 1i++){
for (int J = 0; J < 3; Jj++){
sum += gauss[i][]j] * 1 datal(i+l row-1)* (L SIZE+2)+j+1 col-1];
}
}

127

Synchronization Function

void _ syncthreads();
Synchronizes all threads in a block

Once all threads in a block have reached this point,
execution resumes normally

Used to avoid RAW / WAR / WAW hazards when
accessing shared or global memory

128

Tiling/Blocking in On-chip Memories

Tiling or Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the on-chip RAM (or other
on-chip memory, e.g., scratchpad)

o Avoids on-chip RAM conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the on-chip RAMs

o Let's first see an example for CPUs

129

Naive Matrix Multiplication (I)

= Matrix multiplication: C=AxB

= Consider two input matrices A and B in row-major layout

o AsizeisMxP
o BsizeisP x N
o CsizeisMx N

B

A

130

Naive Matrix Multiplication (II)

= Naive implementation of matrix multiplication
o Poor access locality

#define A(i,J) matrix A[i * P + J]
#define B(i,J) matrix B[i * N + j]
#define C(i,J) matrix C[1i * N + Jj]

for (i = 0; i < M; i++){ // i1 = row index B A
for (jJ = 0; §J < N; j++){ // j = column index
C(i, j) = 0; // Set to zero

for (k = 0; k < P; k++) // Row x Col

C(i, J) += A(1, k)f?!!gililr k P

S

Consecutive accesses to B are far from
each other, in different memory lines.
Every access to B is likely to cause a row
buffer miss

131

Tiled Matrix Multiplication (I)

= Tiled Matrix Multiplication:

o Achieve better on-chip RAM locality
by computing on smaller tiles or
blocks that fit in the RAMs

=
-—
© I
0)
—
-—
i)
tile dim
Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 1 3 2
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix Multiplication (I1I)

= Tiled implementation operates on submatrices (tiles or
blocks) that fit fast RAMs (cache, scratchpad, RF)

#define A(i,J) matrix A[1i * P + J]
#define B(i,J) matrix B[1i * N + J]
#define C(i,J) matrix C[1 * N + J]

for (I = 0; I <M; I += tile dim) { B T
for (J = 0; J < N; J += tile dim) {

Set to zero(&C(I, J)); // Set to zero

for (K= 0; K< P; K += tile dim) K D

Multiply tiles(&C(I, J), &A(I, K), &B(K, J));

-)
/ A

Multiply small submatrices (tiles or blocks)
of size tile dim x tile dim

tile dim
<+—>
v

I
' . JN
tile dim
Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 1 3 3

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Example: Matrix-Matrix Multiplication (I)

134

Slide credit: 1zzat El Hajj

Example: Matrix-Matrix Multiplication (I1)

Parallelization approach: assign one thread to each element in the output matrix (C)

N

C=AXxB B

135

Slide credit: 1zzat El Hajj

Example: Matrix-Matrix Multiplication (I111)

__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

unsigned int row
unsigned int col

blockIdx.y*blockDim.y + threadIdx.y;
blTockIdx.x*blockDim.x + threadIdx.x;

float sum = :
(unsigned int i = 0; i < N; ++1) {
sum += A[r‘ow*N + -i]:':B[-i:':N + CO-l:l;
}
CLrow*N + col] = sum;
}
C=AxB 5
A C
150

Slide credit: 1zzat El Hajj

Reuse in Matrix-Matrix Multiplication (I)

P

C=AXxB B

Some of the
threads in the
N N same thread

block use the
same input data

JAY N C

137

Slide credit: 1zzat El Hajj

Reuse in Matrix-Matrix Multiplication (II)

P

C=AXxB B

Some of the
threads in the
N N same thread

block use the
same input data

JAY N C

138

Slide credit: 1zzat El Hajj

Reuse in Matrix-Matrix Multiplication (111

Sometimes, we are lucky:

o The thread finds the data in the L1 cache because it was
recently loaded by another thread

Sometimes, we are not lucky:

o The data gets evicted from the L1 cache before another
thread tries to load it

Solution:

o Let the threads work together to load part of the data and
ensure that all threads that need it use it before loading more
data

o Use shared memory to ensure data stays close
o Optimizing called tiling because divides input to tiles

139

Slide credit: 1zzat El Hajj

Tiled Matrix-Matrix Multiplication (I)

Ciile = Atle1 X Byjler B
Step 1: Load
the first tile of
N - each input

matrix to shared
memory (each
thread loads

A N N C one element)

140

Slide credit: 1zzat El Hajj

Tiled Matrix-Matrix Multiplication (IT)

Ctile +=A

Slide credit: 1zzat El Hajj

Atilel

tile

1 X Bijer

Btilel

Step 2: Each
thread computes its

partial sum from
the tiles in shared
memory (threads
wait for each other
to finish)

tile

141

Tiled Matrix-Matrix Multiplication (I11)

Citle 7= Avite2 X Bijler >
...accumulate
N N the second tile
A : ¢
142

Slide credit: 1zzat El Hajj

Tiled Matrix-Matrix Multiplication (IV)

Ciie 7= Avitez X Bijies B
...and
5 i accumulate
the third tile
JAY N C

143

Slide credit: 1zzat El Hajj

Tiled Matrix-Matrix Multiplication (V)

_ _shared__ float A_S[TILE_DIM][TILE_DIM];
__shared__ float B_S[TILE_DIM][TILE_DIM];

Declare arrays in shared memory

unsigned int row
unsigned int col

blockIdx.y*blockDim.y + threadIdx.y;
blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;
(unsigned 1nt tile = 0; tile < N/TILE_DIM; ++tile) {

// Load tile to shared memory
A_s[threadIidx.y][threadIdx.x] = A[Lrow*N + tile*TILE_DIM + threadIdx.x];
B_s[threadIidx.y][threadIdx.x] = B[(ti1e*TILE_DIM + threadIdx.y)*N + col];

__syncthreads();
\Threads wait for each other to finish loading before computing

// Compute with tile

(unsigned int i = 0; 1 < TILE_DIM; ++1) {

sum += A_s[threadidx.y][1]*B_s[1][threadIdx.x];
}

__syncthreads(); _ . : .
Y O T Threads wait for each other to finish computing before loading
}

CLrow*N + col] = sum;

. . e 144
Slide credit: Izzat El Hajj

State-of-the-art CPU GPU and FPGA

CPU (AMD 2.8 (FP32)
! / 512GB 32.0GB/s
Threadrippe | 64 (128) 1.4 (FP64) No
et (80GB/s) (PCle 4.0 X16)
19.5 (FP32)
- / 40/80GB
GPU (Nvidia 9.7 (FP64), 32.0GB/s
a100) | B192(28K) |56 Fp32 Tenson), (2B (PCle 4.0 X16) | O
312 (FP16, Tensor)
9,024
FPGA ! 40GB 16.0GB/s Yes
(U280) (el el (752 (460GB/s) (PCIe 4.0 X8)
MULS)

Limitation of GPU

GPU

CPU
I |

pCie >
N,

1935GB/s

146

Limitation of GPU

Serial Code of Prefix sum:

GPU Code of Prefix sum:
Multi-pass (ISSUE)

// Fills prefix sum array
void fillPrefixSum(int arr[], int n, int
prefixSum[])
{ prefixSum[@] = arr[0];
// Adding present element
for (int i = 1; 1 < n; i++)
prefixSum[i] = prefixSum[i-1] + arr[i]; }

Alterations for Arbitrary Sized Arrays

Initial array of values
Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3

Divide the large array into blocks that can be scanned by a single thread block
Scan each block and write the total sums of each block to another array of blocks
Secan the block sums, generating an array of block increments

The resultis added to each of the element of their respective block

Oo0Ooaog

147

Nvidia’s Success: Transparent Scalability

time

= Hardware is free to schedule thread blocks

Gen 1l

Device

Gen 2

Device

Each block can execute in any order relative to other blocks.

'

~

time

The CUDA code stays the same and enjoys performance
improvement while GPU hardware evolves.

Slide credit;: Hwu & Kirk

148

Key Messages:

Programming model is the key success of Nvidia, rather
than the GPU itself.

GPU has an order of magnitude higher memory bandwidth
and compute power than CPU.

Offloading a task to GPU pays off only when the task has
enough compute intensity.

Al task needs compute-intensive accelerators, e.g., GPU
and Al processor.

149

i < N; i++)

Proo. Model 3: Multithreaded ™™ cia1 = ati) + a1i1,
g

Realization: Each iteration is independent

This programming model (software) is called:

SPMD: Single Program Multiple Data

Executed on a SIMT machine (hardware)
Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

151

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions -2
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline

a Can group threads into warps flexibly - i.e., can group threads

that are supposed to fruly execute the same instruction =2
dynamically obtain and maximize benefits of SIMD processing

152

Briet Review ot GPU Architecture (I)

TPC

o Tesla architecture (G80/GT200)

I

= Streaming Processor Array
am——

TP

SM SM

Texture Unit ‘\
\
\
\
\

Briet Review ot GPU Architecture (1I)

= Streaming Multiprocessors (SM)
o Streaming Processors (SP)

Warp Scheduler

Dispatch Unit

= Blocks are divided into warps o
o SIMD unit (32 threads) —
| LosT |
| LoisT |
| LosT |
Block O’s warps Block 1’s warps Block 2’s warps
to\\t\ixzz\:\:\tgl tO\\t;l\EZ\QQ\t 31 to\\t;l\szxiixt $1 -
i 2 /2 i 4 2 /2 | -
1 1 | LosT |
| LoisT |

NVIDIA Fermi architecture

154

Briet Review of GPU Architecture (I111)

Streaming Multiprocessors (SM) or Compute Units (CU)
o SIMD pipelines

Streaming Processors (SP) or CUDA “cores”
a Vector lanes

Number of SMs x SPs across generations
Tesla (2007): 30 x 8

Fermi (2010): 16 x 32

Kepler (2012): 15 x 192

Maxwell (2014): 24 x 128

Pascal (2016): 56 x 64

Volta (2017): 80 x 64

a
a
a
a
a
a

155

Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions -2
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads Into warps flexibly - I.e., can group threads
that are supposed to fruly execute the same instruction =2
dynamically obtain and maximize benefits of SIMD processing

157

High-ILevel View of a GPU

;’ (PC, Mask) H

' I-Cache

Shader| |Shader| |Shader| ,,, | Shader *

Core Core Core Core
Decode

b4 |
Interconnection Network '1.1 g Q| [:
3 3 o e e |e
L |
Memory | | Memory Memory | | :_;_u -:au' -;,—q .;,—':! |
Controller| |Controller Controller| % | ! % '751. % % ;
¢ t ses t ! :m @ | @ | |®|]
‘| 1 SIMD Execution !
GDDR3 GDDR3 GDDR3 | Tm === !

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 288.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o No interlocking: One instruction per
thread in pipeline at a time.

o Interleave warp execution to hide
latencies

Register values of all threads stay in
register file

FGMT enables long latency tolerance
o Millions of pixels

Slide credit: Tor Aamodt

\ 4

Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

Warps available
for scheduling

SIMD Pipeline

\ 2
| I-Fetch |
\ 2
| Decode |
2 2 2
Al | H 3
Y Vv v Warps accessing
2|2 = memory hierarchy
$ s s Miss?
| .D-Cache n Thread Warp 1
All H't?i Data Thread Warp 2
- :
T Writeback | | Thread Warp 6 |

159

Warp Execution (Recall the Slide)

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

32-thread warp executing ADD A[tid],B[tid] = C[tid]

A[6] B[6]
A[5] B[5]
Al4] B[4]
A[3] B[3]
’ ’
Cvy
| cl21
O
Time T

C[0]

Slide credit: Krste Asanovic

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
b b b b

> TR]]]] 1

\ C[8] / \ C[9] / \C[lO] / \C[ll] /

| aw as o ae) an
C[0] C[1] C[2] C[3]

< Space >

160

SIMD Execution Unit Structure

p / Functional Unit
4 L] e e)
[\ [[\ [T

R Y

Registers \/T T\" /T T\,, /T T\,, /T T\v)

for each

Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, .. 2, 6,10, .. 3,7, 11, ..

Lane

Memory Subsystem

161

Slide credit: Krste Asanovic

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp - 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 162

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU

o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. SOUSSUNTSY BYOOIMOIMHY OO OO
Parallel Kernel (device)
(Ll Ll Ll 7{ccccccl
KernelA<<<nBlk , nThr>>> (args) ;))()()) DD >3 >>>>>>> > >)())) DD
Serial Code (host)
. DI BYOOIMMOMHY OO YOOI
Parallel Kernel (device)
Ll Ll Ll 7{ccccccl
KernelB<<<nBlk , nThr>>> (args) ; 2 OSSSSSSSSSS OO SSSSSSSSSSS

Slide credit: Hwu & Kirk

163

From Blocks to Warps

= GPU cores: SIMD pipelines
o Streaming Multiprocessors (SM)
o Streaming Processors (SP)

= Blocks are divided into warps

o SIMD unit (32 threads)

Block O’s warps
]

Block 1’s warps

tOtlt2..1t31
NNNNNNNNARN

Block 2’s warps

t0tlt2.. 131
NNNNNNNNARN
)

tOtlt2.. 131
NN

Warp Scheduler

Dispatch Unit

NVIDIA Fermi architecture

16

4

SPMD

Single procedure/program, multiple data

o This is a programming model rather than computer
organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware
165

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WarpX 4 ¥4 \ - Vidd e v Wapz

166

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

167

Dynamic Warp Formation Example

x/1111
A y/1111
Legend
x/1110 A_ A
B y/0011 Ir__:l Execution of Warp x Ir_’| Execution of Warp y
I_>| at Basic Block A I_>| at Basic Block A
¢ %1000] [5 x/0110] [= x/0001 = =
y/0010 y/0001 y/1100 D
A new warp created from scalar
x/1110 3| threads of both Warp x and y
—» | executing at Basic Block D
p—

E
: I
Baseline °*°° |_>|
>,
. >
Dynamic G
5 5 > > > >l
Warp oool"II_VI > nd | nd > |—>I
: i< idld| s E< E<lg |—>|
Formation > 1> |> ->[ll> >l >

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping
Functional Unit

(—] —] /AT ==

T 1

L)

[
Registers \/T T\ i /T T\ v /T (- /T T\ v)
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, .. 2, 6,10, .. 3,7, 11, ..

Lane

Memory Subsystem

169

Slide credit: Krste Asanovic

Clarification of Some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines

170

Programming Model vs. Hardware Execution Model

Hardware Programming Model Programming Model
GPU Thread blocks
Streaming 00oo0

Multi-processor 18000 Thread block (s)

Wrap

CUDA core: Thread

171

NVIDIA H100 Block Diagram

PCI Exproas 50 Host Interface

wannues Loy

e a0 A

1sgnitnes Moway mgosmnT Aincity

|
3
5
3
o
5
E
s
3
i
2
a
-]
r
B
3
<
%
a
g
5
g
=
B
2
8
§
L
3
=
3
3

mpaeon Aose

Vemory Controme Meowary ©
pasan Ao

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

48 TFLOPS Single Precision*
e —p— r——— 24 TFLOPS Double Precision*

Dispatah Unit (37 throadio i) Dapatch Unit (32 threndicik)

Rugisinr File (16 384 x 22-biy) Roginter File (16384 x 32-bu) 800 TFLO PS (FP 1 6, Tensor CoreS)*
(28] PBa 2 e
(oot] Frea FPa2 Lha)
ma FPed rn L)

P P P12
g el a2
(2o M) ! P2
(o] red PR
] FFCA TENSOR CORE e TENSOR CORE
FEa e 4" GENERATION PR 4" GENERATION
" FFEA Ll
(2 o) PR (22
] res PR
P FPOA (220 5

! FPI red FPR2
v rred L
P FRRA rn

—— - e g Range Precision
L imatruction Cache || B 8 et Cache & oxponent mantissa
Warp Scheduber (12 threadich | Warg Schuduier (11 raatiuih) o8 23
o c m |
Dispateh Unit {37 throadioh) Dapateh Unit (32 thraadici| . e (—— - multiply
FP32 S .

Rogistor File (16,384 x 32-bin) Register File (16,384 = 32.bw) il .35‘4.) »m1.0) accomulate to
) FPed £z FP16 =—{IIII l FP32 or FP16
e gy : FPI2 e8 m7
" FPod 2 ’ [TITT 7.

e e e BF16 ST Bias/act

rr:: el Fina2 —_— 85 m2

e F e rro i {D]I] T {

110 %3 Y L ~ 71 - >

e TENSOR CORE resz TENSOR CORE : ed m3

e 4" GENERATION 2 PPN 4" GENERATION FPR ITIT T

FP8 §—Il FP32|FP16|BF16|FP8

ma P2 B -

e P2 ke SM)
mua L) “

"] FPI2

a3 2 PP

- - Allocate 1 bit to either Support for multiple accumulator

range or precision and output types

Tensor Memory Accelerator

Tes Tex

biteas o

Llel 1 WAH N Lansickiata hitaed Mol
AHpPSTratvyeoperfvitia-comogrvitiaropper=arenttecteie=-ae Pty

* Preliminary performance estimates 173

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Tensor Memory Accelerator

= Asynchronous memory copy with LDGSTS instruction vs. TMA

H100
Using TMA Unit

A100
Using LDGSTS instr

SM

Tensor 0
et
Threads

Data Reads
Global Memory

L1 Cache

TMA unit reduces addressing overhead

A single thread per warp issues the
TMA operation

Support for different tensor layouts
(1D-5D)

Addr gen by threads

SM
Tensor |l Registers
Addr gen by TMA

= Threads

Data + TransCnt - Reads

Global Memory

>
v

padding

Tensor height

"
h 2

* Tensor
stride

>

base addr

Tensor width

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

174

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Distributed Shared Memory

= Shared memory virtual address space distributed across the
blocks of a cluster

= Load, store, and atomic operations to other SM’s shared memory

A100 H100

, ¢ > 7 \ Clster 3
Thread Block Thread Block Thread Block Thread Block
- ‘ SM to SM
SMEM | SMEM | SMEM Network SMEM

=l =3 ' L J

Global

MEM

Thread block clusters and distributed shared memory (DSMEM) are leveraged
via cooperative groups API

TMA unit supports copies across thread blocks in a cluster

Asynchronous transaction barriers

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 175

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

