Graphics Processing Units

Prof. Zeke Wang

Zhejiang University July 2024

Where Are We?

The von Neumann Model

von Neumann Model: Two Key Properties

- Von Neumann model is also called *stored program computer* (instructions in memory).
- von Neumann Model has two key properties:

1, Stored program

- Instructions stored in a linear memory array
- Memory is unified between instructions and data
 - □ The interpretation of a stored value depends on the control signals

2, Sequential instruction processing

- One instruction processed (fetched, executed, completed) at a time
- Program counter (instruction pointer) identifies the current instruction
- Program counter is advanced sequentially except for control transfer instructions

Where Are We?

A Single-Cycle Microarchitecture A Closer Look

Single-cycle Machine

A Very Basic Instruction Processing Engine

- Each instruction takes a single clock cycle to execute.
- Only combinational logic is used to implement instruction execution.
 - *No intermediate, programmer-invisible state updates*

AS = Architectural (programmer visible) state at the beginning of a clock cycle Process instruction in one clock cycle AS' = Architectural (programmer visible) state at the end of a clock cycle

Multi-Cycle Microarchitectures

Where Are We?

Multi-Cycle Microarchitectures

- Goal: Let each instruction take (close to) only as much time it really needs
- Idea of multi-cycle CPU:
 - Decrease clock cycle time
 - Each instruction takes as many clock cycles as it needs to take
 - Multiple state transitions per instruction
 - The states followed by each instruction is different

The "Process Instruction" Step of Multi-Cycle CPU

- ISA specifies abstractly what AS' should be, given an instruction and AS
 - □ It defines an abstract finite state machine where
 - State = programmer-visible state
 - Next-state logic = instruction execution specification
 - From ISA point of view, there are no "intermediate states" between AS and AS' during instruction execution
 - One state transition per instruction

Microarchitecture implements how AS is transformed to AS'

- We can have programmer-invisible state to optimize the speed of instruction execution: **multiple** state transitions per instruction
 - Single-cycle: $AS \rightarrow AS'$ (transform AS to AS' in a single clock cycle)
 - Multi-cycle: AS → AS+MS1 → AS+MS2 → AS+MS3 → AS' (take multiple clock cycles to transform AS to AS')

Multi-Cycle Microarchitecture

Where Are We?

Can We Use the Idle Hardware to Improve Concurrency?

- Goal: More concurrency → Higher instruction throughput (i.e., more "work" completed in one cycle)
- Key Idea: When an instruction is using some resources in its processing phase, process other instructions on idle resources not needed by that instruction
 - E.g., when an instruction is being decoded, fetch the next instruction
 - E.g., when an instruction is being executed, decode another instruction
 - E.g., when an instruction is accessing data memory (ld/st), execute the next instruction
 - E.g., when an instruction is writing its result into the register file, access data memory for the next instruction

Pipelining: Basic Idea

- More systematically:
 - Pipeline the execution of multiple instructions
 - Analogy: "Assembly line processing" of instructions
- Idea of pipelining:
 - Divide the instruction processing cycle into distinct "stages" of processing
 - Ensure enough hardware resources to process one instruction in each stage
 - Process a **different** instruction in each stage
 - Instructions consecutive in program order are processed in consecutive stages
- Benefit: Increases instruction processing throughput (1/CPI)

The Laundry Analogy: Pipeline

- "place one dirty load of clothes in the washer",
- "when the washer is finished, place the wet load in the dryer",
- "when the dryer is finished, take out the dry load and fold",
- "when folding is finished, put the clothes away".

Observations:

- 1, steps to do a load are sequentially dependent,
- 2, different steps do not share resources,
- 3, no dependence between different loads.

Pipelining Multiple Loads of Laundry

Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

Pipelined: 4 cycles per 4 instructions (steady state)

1 instruction completed per cycle

Time

Where Are We?

Agenda for Today

Why GPU?

- Hardware Execution Model
- Programming Model
 - SISD vs. SIMD vs. SPMD
 - GPU Programming Example
- Advance
 - SIMT (Hardware) & Warp (Software)

Need More Computing Power.

OpenAI: Compute Power Needed by NN Model

CPU vs GPU: Compute Perspective

CPU:

- Few complex cores
- Larger cache for low memory latency
- Large and slow memory

GPU:

- Lots of simple cores
- Small cache for low memory latency
- Small and fast memory

	Cores (Threads)	TFLOPS	Memory Size (Bandwidth)	PCIe	Network
CPU (AMD Threadrippe r 3995WX)	64 (128)	2.8 (FP32), 1.4 (FP64)	512GB (80GB/s)	32.0GB/s (PCIe 4.0 X16)	No
GPU (Nvidia H100)	18432 (128K)	67 (FP32), 34 (FP64), 989 (FP32, Tensor), 1979 (FP16, Tensor)	80GB (3350GB/s)	64.0GB/s (PCIe 5.0 X16)	No
FPGA (U280)	9,024 (25x18 MULs)	1.8 (FP32)	40GB (460GB/s)	16.0GB/s (PCIe 4.0 X8)	Yes

Relationship between CPU and GPU

More cores → More trouble

Challenge: How to manipulate them?

GPU Computing

Key Idea:

Computation is offloaded to the GPU

Three steps:

- CPU-GPU data transfer (1)
- □ GPU kernel execution (2)

□ GPU-CPU data transfer (3)

Programming Model: CPU and GPU

- CPU-GPU Co-processing:
 - **CPU:** Sequential or modestly parallel sections
 - GPU: Massively parallel sections

Serial Code (CPU):

Parallel Kernel (GPU):
KernelA<<<nBlk, nThr>>>(args);

Serial Code (CPU):

Parallel Kernel (GPU):
KernelB<<<nBlk, nThr>>>(args);

29

GPUs are SIMD Engines Underneath

- The instruction pipeline operates like a SIMD pipeline (e.g., an array processor)
- However, the programming is done using threads, NOT SIMD instructions
- To understand this, let's go back to our parallelizable code example
- But, before that, let's distinguish between
 - Programming Model (Software)

VS.

Execution Model (Hardware)

Programming Model vs. Hardware Execution Model

- Programming Model: how the programmer expresses the code
 - E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, Multi-threaded (MIMD, SPMD), ...
- Hardware Execution Model: how the hardware executes the code underneath
 - E.g., Out-of-order execution, Vector processor, Array processor, Dataflow processor, Multiprocessor, Multithreaded processor, ...
- Discussion: Execution Model can be very different from Programming Model
 - □ E.g., von Neumann model implemented by an OoO processor
 - □ E.g., SPMD model implemented by a SIMD processor (a GPU)

GPU: Programming Model vs. Hardware Execution Model

Agenda for Today

Where is GPU? & Key Message

Hardware Execution Model

- Programming Model
 - SISD vs. SIMD vs. SPMD
 - GPU Programming Example
- Advance
 - SIMT (Hardware) & Warp (Software)

A Many-core GPU (Hardware Execution Model)

NVIDIA GeForce GTX 285

NVIDIA-speak:

- 240 stream processors (CUDA cores)
- "SIMT execution"

Generic speak:

- 30 cores
- a 8 SIMD functional units per core

NVIDIA, "NVIDIA GeForce GTX 200 GPU. Architectural Overview. White Paper," 2008.

NVIDIA GeForce GTX 285 "core"(SM)

SIMD functional unit, control shared across 8 units
 multiply-add
 multiply
NVIDIA GeForce GTX 285 "core"

- Groups of 32 threads share instruction stream (each group is a Warp)
- Up to 32 warps are simultaneously interleaved
- Up to 1024 thread contexts can be stored

NVIDIA GeForce GTX 285

30 cores on the GTX 285: 30K threads

Evolution of NVIDIA GPUs: Compute

NVIDIA V100

NVIDIA-speak:

- 5120 stream processors (CUDA cores)
- "SIMT execution"

Generic speak:

- 80 cores
- 64 SIMD functional units per core
- Tensor cores for Machine Learning
- NVIDIA, "NVIDIA Tesla V100 GPU Architecture. White Paper," 2017.

NVIDIA V100 Block Diagram

80 cores on the V100

https://devblogs.nvidia.com/inside-volta/

NVIDIA A100

NVIDIA-speak:

- General Gen
- "SIMT execution"

Generic speak:

- 108 cores
- 64 SIMD functional units per core

- Tensor cores for Machine Learning
 - Support for sparsity
 - New floating point data type (TF32)

NVIDIA A100 Block Diagram

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)

40MB L2 cache

NVIDIA H100

NVIDIA-speak:

- 8448 stream processors (CUDA cores)
- "SIMT execution"

- 132 cores
- 64 SIMD functional units per core
- Tensor cores for Machine Learning
 - Support for sparsity
 - Support for transformer

NVIDIA H100 Block Diagram

HOPPER H100 TENSOR CORE GPU

80B Transistors, TSMC 4N

NVIDIA

4th Gen Tensor Core **Thread Block Clusters** **New SHARP support NVLink Network**

	FP8	FP16	FP32	FP64	Memory bandwidth	Memory capacity
H100	4000T	2000T	1000T	60T	3TB/s	80GB
A100	666T	666T	333T	20T	2TB/s	80GB

Compute power scales well.

GPU memory capacity does not scale well.

A GPU is a SIMD (SIMT) Machine

- Except it is not programmed using SIMD instructions
- It is programmed using threads (SPMD programming model)
 - Each thread executes the same code but operates a different piece of data
 - Each thread has its own context (i.e., can be treated/restarted/executed independently)

Agenda for Today

- Where is GPU? & Key Message
- Hardware Execution Model
- Programming Model

SISD vs. SIMD vs. SPMD

- GPU Programming Example
- Advance
 - SIMT (Hardware) & Warp (Software)

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
C[i] = A[i] + B[i];</pre>

Let's examine three programming options to exploit instruction-level parallelism present in this sequential code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (SPMD)

Prog. Model 1: Sequential (SISD)

Can be executed on thee processors:

- 1, Pipelined processor
- 2, Out-of-order execution processor
 - Independent instructions executed when ready
 - Different iterations are present in the instruction window and can execute in parallel in multiple functional units
 - In other words, the loop is dynamically unrolled by the hardware
- 3, Superscalar or VLIW processor
 - Can fetch and execute multiple instructions per cycle

Prog. Model 2: Data Parallel $(SIMD)^{for (i=0; i < N; i++)}_{C[i] = A[i] + B[i];}$

Prog. Model 3: Multithreaded for (i=0; i < N; i++) c[i] = A[i] + B[i];

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread to execute each iteration. Each thread does the same thing (but on different data)

Prog. Model 3: Multithreaded for (i=0; i < N; i++) c[i] = A[i] + B[i];

Realization: Each iteration is independent

This programming model (software) is called: SPMD: Single Program Multiple Data

SPMD

- SPMD: Single procedure/program, multiple data
 - This is a **programming model** rather than computer organization
- Each processing element executes the same procedure, except on different data elements
 - □ Procedures can synchronize at certain points in program, e.g. barriers
- Key Idea of SPMD: multiple instruction streams execute the same program
 - Each program/procedure 1) works on different data, 2) can execute a different control-flow path, at run-time
 - Many scientific applications are programmed this way and run on MIMD hardware (multiprocessors)
 - Modern GPUs programmed in a similar way on a SIMD hardware

Agenda for Today

- Where is GPU? & Key Message
- Hardware Execution Model
- Programming Model
 - SISD vs. SIMD vs. SPMD

• GPU Programming Example

Advance

SIMT (Hardware) & Warp (Software)

CUDA/OpenCL Programming Model

- Single Program Multiple Data (SPMD), e.g., CUDA
 - Bulk synchronous programming: Global (coarse-grain) synchronization between kernels
- The device (typically GPU) executes CUDA kernels
 - Grid
 - Thread Block
 - CUDA runtime schedules at granularity of thread block.
 - A thread block is a programming abstraction that represents a group of threads that can be executed in parallel.
 - Within a block, shared memory, and synchronization.
 - Thread
 - A thread corresponds to an iteration.

GPU: Programming Model vs. Hardware Execution Model

CUDA: Memory Hierarchy

Traditional Program Structure in CUDA

Function prototypes

float serialFunction(...);
__global__ void kernel(...);

- main()
 - 1) Allocate memory space on the device cudaMalloc(&d_in, bytes);
 - 2) Transfer data from host to device cudaMemCpy(d_in, h_in, ...);
 - a 3) Execution configuration setup: #blocks and #threads
 - 4) Kernel call kernel<<<execution configuration>>> (args...);
 - 5) Transfer results from device to host cudaMemCpy(h_out, d_out, ...);
- Kernel __global__ void kernel(type args,...)
 - Automatic variables transparently assigned to registers

 - Intra-block synchronization: _____syncthreads();

Repeat as needed

CUDA Programming Language

Memory allocation

cudaMalloc((void**)&d_in, #bytes);

Memory copy

cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

Kernel launch

kernel<<< #blocks, #threads >>>(args);

Memory deallocation

cudaFree(d_in);

Explicit synchronization

cudaDeviceSynchronize();

First GPU Example: Vector Addition (I)

• Key Idea: one GPU thread to each element-wise addition

First GPU Example: Vector Addition (II)

- A grid: the whole set of threads
- We need a way to assign threads to GPU cores

GPU: Programming Model vs. Hardware Execution Model

Host Code Example: Vector Addition

void vecadd(float* A, float* B, float* C, int N) {

//1, Allocate GPU memory
float *A_d, *B_d, *C_d;

cudaMalloc((void**) &A_d, N*sizeof(float)); cudaMalloc((void**) &B_d, N*sizeof(float)); cudaMalloc((void**) &C_d, N*sizeof(float));

```
//2, Copy data to GPU memory
cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);
```

//3, Perform computation on GPU

```
const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;
vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);
```

```
//4, Copy data from GPU memory
cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);
```

```
//5, Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);
```

}

Kernel Code Example: Vector Addition

```
__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
```

```
int i = blockDim.x*blockIdx.x + threadIdx.x;
```

```
C[i] = A[i] + B[i];
```

blockDim: block dimension

blockIdx: block index within a grid

threadIdx: thread index within a block

}

Boundary Conditions

- Question: What if the size of the input is not a multiple of the number of threads per block?
 - Solution: use the ceiling to launch extra threads then omit the threads after the boundary

Host code:

const unsigned int numBlocks = (N +numThreadsPerBlock - 1)/numThreadsPerBlock; vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

Kernel code:

}

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

```
int i = blockDim.x*blockIdx.x + threadIdx.x;
```

```
if(i < N) {
        C[i] = A[i] + B[i];
}
```

Sample GPU Program: Matrix Multiplication

CPU Program

GPU Program

```
void add matrix
(float *a, float* b, float *c, int N) {
  int index;
  for (int i = 0; i < N; ++i)
     for (int j = 0; j < N; ++j) {
       index = i + j*N;
       c[index] = a[index] + b[index];
int main () {
  add matrix (a, b, c, N);
```

```
global add matrix
(float *a, float *b, float *c, int N) {
int i = blockldx.x * blockDim.x + threadldx.x;
Int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if (i < N && j < N)
 c[index] = a[index]+b[index];
}
Int main() {
 dim3 dimBlock( blocksize, blocksize);
 dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
 add matrix<<<dimGrid, dimBlock>>>( a, b, c, N);
}
```

Indexing and Memory Access

Images are 2D data structures

- height x width
- □ Image[j][i], where $0 \le j < \text{height}$, and $0 \le i < \text{width}$

Image Layout in Memory

- Row-major layout
- Image[j][i] = Image[j x width + i]

Indexing and Memory Access: 1D Grid

Agenda for Today

- Where is GPU? & Key Message
- Hardware Execution Model
- Programming Model
 - SISD vs. SIMD vs. SPMD
 - GPU Programming Example

Advance

SIMT (Hardware) & Warp (Software)
GPU: Programming Model vs. Hardware Execution Model

SIMT (Hardware) & Warp (Software)

SIMT: Single Instruction Multiple Thread

- More precisely, SIMD (Single Instruction Multiple Data)
- □ Key Feature: 16 CUDA cores in a SM are executed in a lock step.

Warp:

- A warp, a basic execution unit, consists of 32 consecutive threads
- A thread block is divided into warps for SIMT execution.

Why SIMT and Warp?

Reduce GPU scheduling overhead

How to Form Warps?

Warp: A set of threads that execute the same instruction (i.e., at the same PC)

Mapping Warps on a SIMT Hardware

Warp:

- A thread block is divided into warps.
- A warp executes the same instruction on different data elements

SIMT Pipeline:

16 CUDA cores are executed in a lock step to serve each warp.

GPU Execution with Warps

- Assume: a warp consists of 32 threads
- If you have 32K iterations, and 1 iteration/thread \rightarrow 1K warps
- Warps can be interleaved on the same pipeline → Fine grained multithreading of warps.

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions

- Example machine has 32 threads per warp and 8 lanes
- Completes 24 operations/cycle while issuing 1 warp/cycle

SIMT is not SIMD!

SIMD vs. SIMT Execution Model

- SIMD: A single sequential instruction stream of SIMD instructions → each instruction specifies multiple data inputs
 [VLD, VLD, VADD, VST], VLEN
- SIMT: Multiple instruction streams of scalar instructions → threads grouped dynamically into warps
 [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

- □ Can treat each thread separately \rightarrow i.e., can execute each thread independently on any type of scalar pipeline \rightarrow MIMD processing
- □ Can group threads into warps flexibly → i.e., can group threads that are supposed to *truly* execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

SIMT Code vs. SIMD Code

CUDA code

CPU vector code

Warp-based SIMD vs. Traditional SIMD

- Traditional **SIMD** contains a single thread
- Sequential instruction execution; lock-step operations in a SIMD instruction
- □ Programming model is SIMD (no extra threads) → SW needs to know vector length
- ISA contains vector/SIMD instructions
- Warp-based SIMD consists of multiple scalar threads executing in a SIMD manner (i.e., same instruction executed by all threads)
 - Does not have to be lock step
 - □ Each thread can be treated individually (i.e., placed in a different warp)
 → programming model not SIMD
 - SW does not need to know vector length
 - Enables multithreading and flexible dynamic grouping of threads
 - □ ISA is scalar \rightarrow SIMD operations can be formed dynamically
 - Essentially, it is SPMD programming model implemented on SIMD hardware

Threads Can Take Different Paths in Warp-based SIMD

- Each thread can have conditional control flow instructions
- Threads can execute different control flow paths

Thread Warp				Common PC	
	Thread 1	Thread 2	Thread 3	Thread 4	

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

- A GPU uses a SIMD pipeline to save area on control logic
 - Groups scalar threads into warps
- Branch divergence

occurs when threads inside warps branch to different execution paths

SIMD Utilization

Intra-warp divergence

```
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
   Do_this(threadIdx.x);
}
else{
   Do_that(threadIdx.x);
}
```


Increasing SIMD Utilization

Divergence-free execution

```
Compute(threadIdx.x);
if (threadIdx.x < 32){
    Do_this(threadIdx.x * 2);
}
else{
    Do_that((threadIdx.x%32)*2+1);
}</pre>
```


Vector Reduction: Naïve Mapping (I)

Vector Reduction: Naïve Mapping (II)

Program with low SIMD utilization

```
__shared__ float partialSum[]
unsigned int t = threadIdx.x;
for (int stride = 1; stride < blockDim.x; stride *= 2) {
    __syncthreads();
    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t + stride];</pre>
```

Divergence-Free Mapping (I)

All active threads belong to the same warp

Divergence-Free Mapping (II)

Program with high SIMD utilization

```
__shared__ float partialSum[]
unsigned int t = threadIdx.x;
for (int stride = blockDim.x; stride > 0; stride >> 1){
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t + stride];</pre>
```

GPU Memories

Memory in the GPU Architecture

Memory in the GPU Architecture

 Example of data movement between GPU global memory (DRAM) and GPU cores.

A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy instruction that bypasses L1 cache and register file (RF). Additionally, A100's more efficient Tensor Cores reduce shared memory (SMEM) loads.

A100 feature: Direct copy from L2 to scratchpad, bypassing L1 and register file.

CUDA Variable Type Qualifiers

Variable dec	Memory	Scope	Lifetime	
	<pre>int LocalVar;</pre>	register	thread	thread
	<pre>int localArr[N];</pre>	global	thread	thread
deviceshared	<pre>int SharedVar;</pre>	shared	block	block
device	<pre>int GlobalVar;</pre>	global	grid	application
deviceconstant	int ConstantVar;	constant	grid	application

device is optional when used with __shared _, Or __constant __

Recall cudaMalloc(...) allocates memory from the host

Constant memory can also be allocated and initialized from the host

- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in global memory

Memory Hierarchy in CUDA Programs

Nvidia's Success: Transparent Scalability

Hardware is free to schedule thread blocks

Gen 1 Gen 2 **Device Device** Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 time **Block 0 Block 1 Block 0 Block 1** Block 2 **Block 3** Block 6 Block 7 time **Block 2 Block 3 Block 4 Block 5 Block 6** Block 7 **Block 4 Block 5** Each block can execute in any order relative to other blocks. **Block 6 Block 7**

The CUDA code stays the same and enjoys performance improvement while GPU hardware evolves.

Slide credit: Hwu & Kirk

Key Messages:

- Programming model is the key success of Nvidia, rather than the GPU itself.
- GPU has an order of magnitude higher memory bandwidth and compute power than CPU.
- Offloading a task to GPU pays off only when the task has enough compute intensity.
- AI task needs compute-intensive accelerators, e.g., GPU and AI processor.

Recall: Comparison of Memories

The DRAM Subsystem The Top-Down View

DRAM Subsystem Organization

- Channel
- DIMM
- Rank
- Chip
- Bank
- Row/Column

The DRAM Subsystem

Breaking down a DIMM (module)

Breaking down a Rank

Breaking down a Chip

Inside a DRAM Chip

DRAM Cell Operation

DRAM Cell Operation - ACTIVATE

DRAM Cell Operation – READ/WRITE

DRAM Cell Operation - PRECHARGE

DRAM Bank Operation

Long Global Memory Access Latency

How to optimize global memory access?

Multithreading

Memory Coalescing

Shared Memory

Latency Hiding via Warp-Level FGMT

- Warp: A set of threads that execute the same instruction (on different data elements)
- Fine-grained multithreading
 - One instruction per thread in pipeline at a time (No interlocking)
 - Interleave warp execution to hide latencies
- Register values of all threads stay in register file
- FGMT enables long latency tolerance
 - Millions of pixels

Latency Hiding and Occupancy

- FGMT can hide long latency operations (e.g., memory accesses)
- Occupancy: ratio of active warps to the maximum number of warps per GPU core

2 active warps

4 active warps Warp 0 Instruction 3 Warp 1 Instruction 2 Warp 2 /arp Instruction 1 Instruction 4 Warp 3 (Long latency) Instruction 1 Warp 1 Instruction 3 ********** Warp 0 Instruction 5

Memory Coalescing (I)

- Memory Coalescing :
 - When threads in the same warp access consecutive memory locations in the same burst, the accesses can be combined and served by one burst
 - One DRAM transaction is needed
- If threads in the same warp access locations not in the same burst, accesses cannot be combined
 - Multiple transactions are needed
 - Takes longer to service data to the warp
 - Sometimes called memory divergence

Memory Coalescing (II)

- When accessing global memory, we want to make sure that concurrent threads access nearby memory locations
- Peak bandwidth utilization occurs when all threads in a warp access one cache line (or several consecutive cache lines)

Uncoalesced Memory Accesses

Coalesced Memory Accesses

Shared Memory

- Shared memory is an interleaved (banked) memory
 Each bank can service one address per cycle
- Typically, 32 banks in NVIDIA GPUs
 - Successive 32-bit words are assigned to successive banks
 - Bank = Address % 32
- Bank conflicts are only **possible within a warp** No bank conflicts between different warps

Shared Memory Bank Conflicts (I)

Bank conflict free

Linear addressing: stride = 1

Random addressing 1:1

Shared Memory Bank Conflicts (II)

N-way bank conflicts

2-way bank conflict: stride = 2

8-way bank conflict: stride = 8

Use Shared Memory to Improve Coalescing

Reducing Shared Memory Bank Conflicts

- Bank conflicts are only possible within a warp
 - No bank conflicts between different warps
- If strided accesses are needed, some optimization techniques can help
 - Padding
 - Randomized mapping
 - Rau, "Pseudo-randomly interleaved memory," ISCA 1991
 - Hash functions
 - V.d.Braak+, "Configurable XOR Hash Functions for Banked Scratchpad Memories in GPUs," IEEE TC, 2016

Data Reuse

Data reuse:

Same memory locations accessed by neighboring threads


```
for (int i = 0; i < 3; i++) {
    for (int j = 0; j < 3; j++) {
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}</pre>
```

Data Reuse: Tiling

 To take advantage of data reuse, we divide the input into tiles that can be loaded into shared memory

```
(L_SIZE+2)<sup>2</sup>/L_SIZE<sup>2</sup>
elements per thread
```



```
_shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
```

Synchronization Function

- void __syncthreads();
- Synchronizes all threads in a block
- Once all threads in a block have reached this point, execution resumes normally
- Used to avoid RAW / WAR / WAW hazards when accessing shared or global memory

Tiling/Blocking in On-chip Memories

Tiling or Blocking

- Divide loops operating on arrays into computation chunks so that each chunk can hold its data in the on-chip RAM (or other on-chip memory, e.g., scratchpad)
- Avoids on-chip RAM conflicts between different chunks of computation
- Essentially: Divide the working set so that each piece fits in the on-chip RAMs
- Let's first see an example for CPUs

Naïve Matrix Multiplication (I)

- Matrix multiplication: C = A x B
- Consider two input matrices A and B in row-major layout
 - A size is M x P
 - B size is P x N
 - C size is M x N

Naïve Matrix Multiplication (II)

Naïve implementation of matrix multiplication

Poor access locality

Tiled Matrix Multiplication (I)

- Tiled Matrix Multiplication:
 - Achieve better on-chip RAM locality by computing on smaller tiles or blocks that fit in the RAMs

dim

tile

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1016/B978-0-12-803819-2.00011-2 Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2 Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

Tiled Matrix Multiplication (II)

 Tiled implementation operates on submatrices (tiles or blocks) that fit fast RAMs (cache, scratchpad, RF)

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. <u>https://doi.org/10.1016/B978-0-12-803819-2.00011-2</u> Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. <u>https://doi.org/10.1016/B978-0-12-811986-0.00005-4</u>

Example: Matrix-Matrix Multiplication (I)

Example: Matrix-Matrix Multiplication (II)

Parallelization approach: assign one thread to each element in the output matrix (C)

Example: Matrix-Matrix Multiplication (III)

```
___global___ void mm_kernel(float* A, float* B, float* C, unsigned int N) {
```

```
unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
```

```
float sum = 0.0f;
for(unsigned int i = 0; i < N; ++i) {
    sum += A[row*N + i]*B[i*N + col];
}
C[row*N + col] = sum;
```


}

Reuse in Matrix-Matrix Multiplication (I)

Reuse in Matrix-Matrix Multiplication (II)

Reuse in Matrix-Matrix Multiplication (III)

- Sometimes, we are lucky:
 - The thread finds the data in the L1 cache because it was recently loaded by another thread
- Sometimes, we are not lucky:
 - The data gets evicted from the L1 cache before another thread tries to load it
- Solution:
 - Let the threads work together to load part of the data and ensure that all threads that need it use it before loading more data
 - Use shared memory to ensure data stays close
 - Optimizing called tiling because divides input to tiles

Tiled Matrix-Matrix Multiplication (I)

Tiled Matrix-Matrix Multiplication (II)

$C_{tile} += A_{tile1} \times B_{tile1}$

<u>Step 2:</u> Each thread computes its partial sum from the tiles in shared memory (threads wait for each other to finish)

Tiled Matrix-Matrix Multiplication (III)

Tiled Matrix-Matrix Multiplication (IV)

Tiled Matrix-Matrix Multiplication (V)

```
____shared____float A_s[TILE_DIM][TILE_DIM];
                                                    Declare arrays in shared memory
____shared____float B_s[TILE_DIM][TILE_DIM];
unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0f;
for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {</pre>
    // Load tile to shared memory
    A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x]:
    B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
    ____syncthreads();
                           Threads wait for each other to finish loading before computing
    // Compute with tile
    for(unsigned int i = 0; i < TILE_DIM; ++i) {</pre>
        sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
    }
    ____syncthreads(); ~
                           Threads wait for each other to finish computing before loading
}
```

```
C[row*N + col] = sum;
```
	Cores (Threads)	TFLOPS	Memory Size (Bandwidth)	PCIe	Network
CPU (AMD Threadrippe r 3995WX)	64 (128)	2.8 (FP32), 1.4 (FP64)	512GB (80GB/s)	32.0GB/s (PCIe 4.0 X16)	No
GPU (Nvidia A100)	8192 (128K)	19.5 (FP32), 9.7 (FP64), 156 (FP32, Tensor), 312 (FP16, Tensor)	40/80GB (1935GB/s)	32.0GB/s (PCIe 4.0 X16)	No
FPGA (U280)	9,024 (25x18 MULs)	1.8 (FP32)	40GB (460GB/s)	16.0GB/s (PCIe 4.0 X8)	Yes

Limitation of GPU

Limitation of GPU

Serial Code of Prefix sum:

// Fills prefix sum array
void fillPrefixSum(int arr[], int n, int
prefixSum[])
{ prefixSum[0] = arr[0];
 // Adding present element
 for (int i = 1; i < n; i++)
 prefixSum[i] = prefixSum[i-1] + arr[i]; }</pre>

Alterations for Arbitrary Sized Arrays

- Divide the large array into blocks that can be scanned by a single thread block
- Scan each block and write the total sums of each block to another array of blocks
- □ Scan the block sums, generating an array of block increments
- The result is added to each of the element of their respective block

GPU Code of Prefix sum: Multi-pass (ISSUE)

Nvidia's Success: Transparent Scalability

Hardware is free to schedule thread blocks

Gen 1 Gen 2 **Device Device** Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 time **Block 0 Block 1** Block 0 **Block 1 Block 2 Block 3** Block 6 Block 7 time **Block 2 Block 3 Block 4 Block 5 Block 6** Block 7 **Block 4 Block 5** Each block can execute in any order relative to other blocks. **Block 6 Block 7**

The CUDA code stays the same and enjoys performance improvement while GPU hardware evolves.

Slide credit: Hwu & Kirk

Key Messages:

- Programming model is the key success of Nvidia, rather than the GPU itself.
- GPU has an order of magnitude higher memory bandwidth and compute power than CPU.
- Offloading a task to GPU pays off only when the task has enough compute intensity.
- AI task needs compute-intensive accelerators, e.g., GPU and AI processor.

Prog. Model 3: Multithreaded for (i=0; i < N; i++) c[i] = A[i] + B[i];

Realization: Each iteration is independent

This programming model (software) is called: SPMD: Single Program Multiple Data Executed on a SIMT machine (hardware) Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

- Except it is **not** programmed using SIMD instructions
- It is programmed using threads (SPMD programming model)
 - Each thread executes the same code but operates a different piece of data
 - Each thread has its own context (i.e., can be treated/restarted/executed independently)
- A set of threads executing the same instruction are dynamically grouped into a warp (wavefront) by the hardware
 - A warp is essentially a SIMD operation formed by hardware!

SIMD vs. SIMT Execution Model

- SIMD: A single sequential instruction stream of SIMD instructions → each instruction specifies multiple data inputs
 [VLD, VLD, VADD, VST], VLEN
- SIMT: Multiple instruction streams of scalar instructions → threads grouped dynamically into warps
 [LD, LD, ADD, ST], NumThreads
- Two Major SIMT Advantages:
 - □ Can treat each thread separately → i.e., can execute each thread independently on any type of scalar pipeline
 - Can group threads into warps flexibly → i.e., can group threads that are supposed to *truly* execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

Brief Review of GPU Architecture (I)

- Streaming Processor Array
 - □ Tesla architecture (G80/GT200)

Brief Review of GPU Architecture (II)

- Streaming Multiprocessors (SM)
 Streaming Processors (SP)
- Blocks are divided into warps
 SIMD unit (32 threads)

NVIDIA Fermi architecture

Brief Review of GPU Architecture (III)

- Streaming Multiprocessors (SM) or Compute Units (CU)
 SIMD pipelines
- Streaming Processors (SP) or CUDA "cores"
 Vector lanes
- Number of SMs x SPs across generations
 - □ Tesla (2007): 30 x 8
 - Fermi (2010): 16 x 32
 - □ Kepler (2012): 15 x 192
 - Maxwell (2014): 24 x 128
 - □ Pascal (2016): 56 x 64
 - □ Volta (2017): 80 x 64

Graphics Processing Units SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

- SIMD: A single sequential instruction stream of SIMD instructions → each instruction specifies multiple data inputs
 [VLD, VLD, VADD, VST], VLEN
- SIMT: Multiple instruction streams of scalar instructions → threads grouped dynamically into warps
 [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

- □ Can treat each thread separately → i.e., can execute each thread independently (on any type of scalar pipeline) → MIMD processing
- Can group threads into warps flexibly → i.e., can group threads that are supposed to *truly* execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

High-Level View of a GPU

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

- Warp: A set of threads that execute the same instruction (on different data elements)
- Fine-grained multithreading
 - No interlocking: One instruction per thread in pipeline at a time.
 - Interleave warp execution to hide latencies
- Register values of all threads stay in register file
- FGMT enables long latency tolerance
 Millions of pixels

Warp Execution (Recall the Slide)

SIMD Execution Unit Structure

SIMT Memory Access

 Same instruction in different threads uses thread id to index and access different data elements

Let's assume N=16, 4 threads per warp \rightarrow 4 warps 13 Threads 9 14 15 8 + 8 9 11 12 13 15 10 14 Data elements Warp 0 Warp 1 Warp 2 Warp 3

Warps not Exposed to GPU Programmers

- CPU threads and GPU kernels
 - Sequential or modestly parallel sections on CPU
 - Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

From Blocks to Warps

- GPU cores: SIMD pipelines
 Streaming Multiprocessors (SM)
 - Streaming Processors (SP)
- Blocks are divided into warps
 SIMD unit (32 threads)

NVIDIA Fermi architecture

SPMD

- Single procedure/program, multiple data
 - This is a **programming model** rather than computer organization
- Each processing element executes the same procedure, except on different data elements
 - Procedures can synchronize at certain points in program, e.g. barriers
- Essentially, multiple instruction streams execute the same program
 - Each program/procedure 1) works on different data, 2) can execute a different control-flow path, at run-time
 - Many scientific applications are programmed this way and run on MIMD hardware (multiprocessors)
 - Modern GPUs programmed in a similar way on a SIMD hardware

Dynamic Warp Formation/Merging

- Idea: Dynamically merge threads executing the same instruction (after branch divergence)
- Form new warps from warps that are waiting
 - Enough threads branching to each path enables the creation of full new warps

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same instruction (after branch divergence)

Fung et al., "Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow," MICRO 2007.

Dynamic Warp Formation Example

Hardware Constraints Limit Flexibility of Warp Grouping

Clarification of Some GPU Terms

Generic Term	NVIDIA Term	AMD Term	Comments
Vector length	Warp size	Wavefront size	Number of threads that run in parallel (lock-step) on a SIMD functional unit
Pipelined functional unit / Scalar pipeline	Streaming processor / CUDA core	-	Functional unit that executes instructions for one GPU thread
SIMD functional unit / SIMD pipeline	Group of N streaming processors (e.g., N=8 in GTX 285, N=16 in Fermi)	Vector ALU	SIMD functional unit that executes instructions for an entire warp
GPU core	Streaming multiprocessor	Compute unit	It contains one or more warp schedulers and one or several SIMD pipelines

Programming Model vs. Hardware Execution Model

NVIDIA H100 Block Diagram

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

144 cores on the full GH100 60MB L2 cache

NVIDIA H100 Core

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Tensor Memory Accelerator

Asynchronous memory copy with LDGSTS instruction vs. TMA

TMA unit reduces addressing overhead

A single thread per warp issues the TMA operation

Support for different tensor layouts (1D-5D)

NVIDIA H100 Distributed Shared Memory

- Shared memory virtual address space distributed across the blocks of a cluster
- Load, store, and atomic operations to other SM's shared memory

Thread block clusters and distributed shared memory (DSMEM) are leveraged via cooperative_groups API

TMA unit supports copies across thread blocks in a cluster

Asynchronous transaction barriers