HPC Methodology

Yusux @ ZJUSCT
2024/7/3

https://github.com/Yusux
https://github.com/ZJUSCT

Today's Content

Basic Theories for HPC

Performance Analysis and Optimization Methodology

Practical Optimization Stretagies
HPC Skill Tree

1 Basic Theories for HPC

Factors Affecting Performance

[Algorithms }

Models
(Compute, Networking, Storage)

Software
(0S, Computation/Communication Libs)

Limited By More Abstract

Hardware
(Server, CPU, GPU, SSD, etc.)

Physics
(Power Supply, Cooling Device, etc.)

High-Level Models

e Compute
= Program, Function, Programming language, Computation Graph
= lynn Models (SISD, SIMD, MISD, MIMD), SIMT
e Storage
= Database: Relational, KV, Graph
= Storage System: Block, Object, File
e Networking
= I/0: Blocking, Signal-Driven, Asynchronous
= Communlication Mode: P2P, Collective Communication

Software: Implementation of Models

e Host 0S

= Compute Library

= BLAS, FFT

= OpenMP, pthreads, TBB, Intel MKL, Nvidia CUDA
e Storage

= File System: Local, Remote, Distributed
e Communication Library

= MPI, Gloo, NCCL

Software: Implementation of Models

e Host 0S

= Compute Library

= BLAS, FFT

= OpenMP, pthreads, TBB, Intel MKL, Nvidia CUDA
e Storage

= File System: Local, Remote, Distributed
e Communication Library

= MPI, Gloo, NCCL

Hardware: Operated by Software

Server

Processing Units
= CPU, GPU, NPU, FPGA
m Related: Cache, Memory

Storage Hardware
= HDD, SSD, NVMe
= RAID

Networking
= Ethernet, IB
= Smart NIC, DPU, IPU

Example: Matrix Multiplication - Algorithm

Consider Y = A.- B, where A, B are huge matrices

AB;; = Z Air, - By
k=1

1 2 5 6 —_— 19 22
X —
3 4 7 8 43 50
1x5+2x7=19
1x6+2x8=22

X5+ x7=43

3x6+4x8=50

Example: Matrix Multiplication - Models

We decide to run it in parallel

e Assuming we divide it into 3 small matrix multiplication tasks
e Compute on 3 different processing units
e Distribute workload & gather results via network

X A Y

is equivalent to

Y1l

Y2

Y3

X Al A2 A3

Example: Matrix Multiplication - Software

e For each small matrix multiplication
= e use BLAS for efficient computing

e For workload distributing & result gathering
= e use MPI for communication

Example: Matrix Multiplication - Hardware

e We use BLAS on CPU/GPU
= More efficient/powerful CPU/GPU — higher performance

= For computation, GPUs are usually faster

e We use MPI on InfiniBand
= Larger throughput & lower latency

Example: Matrix Multiplication - Physics

e A1l these hardware may be subject to physical limitations
e Do not let them overheat or run out of power

2 Performance Analysis and
Optimization Methodology

2.1 What 1s optimization?

What 1s optimization?

Before Manual Optimization: After Manual Optimization:
#include <cstdio> #include <cstdio>
long long fibonacci(int i) { static constexpr long long
if(i < 2) { fibonacci(int i) {
return 1; return 1 < 2
} else { ? 1
return fibonacci(i - 1) : fibonacci(i - 1) +
+ fibonacci(i - 2); fibonacci(i - 2);
+ }
} int main() {
int main() { const int k = 5;
int k = 5; printf("fib(%d)=%11d\n", Kk,
printf("fib(%d)=%11d\n", kK, fibonacci(k));
fibonacci(k)); return 0;
return 0; }

What 1s optimization?

Before Manual Optimization: Compilation Result
(gcc 13.2.0, -02):
#include <cstdio>

. ; (omitted)

long long fibonacci(int i) { 293 main:
if(i < 2) { 294 sub rsp, 8
return 1; 295 mov edi, 5
} else { 296 call _Z9fibonaccii
return fibonacci(i - 1) 297 mov esi, 5
+ fibonacci(i - 2); 298 mov edi, OFFSET FLAT:.LCO
} 299 mov rdx, rax
} 300 xor eax, eax
int main() { 301 call printf
int k = 5; 302 xor eax, eax
printf("fib(%d)=%11d\n", kK, 303 add rsp, 8
fibonacci(k)); 304 ret
return 0O;
}

https://godbolt.org/z/rax365P1P

https://godbolt.org/z/rax365P1P

What 1s optimization?

After Manual Optimization: Compilation Result
(gcc 13.2.0, -02):

#include <cstdio>

.LCO:
static constexpr long long .string "fib(%d)=%11d\n"
fibonacci(int i) { main:
return 1 < 2 sub rsp, 8
21 mov edx, 5
: fibonacci(i - 1) + mov esi, 5
fibonacci(i - 2); xor eax, eax
} mov edi, OFFSET FLAT:.LCO
int main() { call printf
const int k = 5; xor eax, eax
printf("fib(%d)=%11d\n", kK, add rsp, 8
fibonacci(k)); ret

return 0;

https://godbolt.org/z/3KKcKEjWa

https://godbolt.org/z/3KKcKEjWa

What 1s optimization?

After Manual Optimization
(another way):

#include <cstdio>

int main() {
puts("fib(5)=5");

return 0;

Failed 02 Optimization
(k = 93, since fib(93) > 2%9):

https://godbolt.org/z/YrYx3eKbz

Another example
(Collatz Conjecture):

bool collatz(int x) {
while (true) {
if (x < 1) return true;
if (x % 2) x »= 1;

else x = 3*x + 1,

}
}
_Z27collatzi:
mov eax, 1
ret

https://godbolt.org/z/exfEjdshj

https://godbolt.org/z/YrYx3eKbz
https://en.wikipedia.org/wiki/Collatz_conjecture
https://godbolt.org/z/exfEjdshj

What 1s optimization?

Mathematical optimization or mathematical programming is the selection of a best element,
with regard to some criteria, from some set of available alternatives. [Wikipedia]

For example, maximize/minimize f(x) subject to z € Q

e r: decision (selection within available alternatives)
e f(z): objective function

e (): constraints (criteria)

https://en.wikipedia.org/wiki/Mathematical_optimization

What is optimization? (Back to HPC)

In our case:

e Goal: Maximize performance e Alternatives
= Speed
= Throughput
= Latency

e Criteria: Limited resources
= Restricted hardware
= Limited Power
= L imited Quota

2.2 Should I optimize?

Should I optimize?

e Is performance critical to my program?
= One-time small programs, just run them slowly

= T can wait till tomorrow to see the results, just play and
wait for it

e Is there room for optimization?
= Performance Test
= Optimization Space Analysis

Performance Test

Just directly run the program and see how long it takes (measured
by wall time)

time_t start = get_time_hires();
// loop 100 times to get a more accurate result
// by averaging the time
for(int 1 = 0; i < 100; i+) {
do_something();
}
time_t stop = get_time_hires();
time_t res = (stop - start)/100;

Optimization Space Analysis

We can find the theoretical However, it i1s somehow still an
upper bounds open question

e CPU/GPU Flops e Modern/Real-World
architectures are complicated

Memory Accessing Speed
e Turn to use black-box models

e PCIe Bandwidth
e Disk/Net IO Speed

Multicore Cache Hierarchy

Intel Xeon E5-2670 v3 CARM 2 3 DRAM
Core 0 Core11 (Haswell, 12 cores)
Regs Regs i
TP | W e L1i & L1d cache
I |
cache | cache vee cache | |cache 32KB, 8-way
L2 unified L2 i
pdinds uniﬁ ed L2 unified cache _ m
cache 256KB, 8-wa ? ; e
— —= Y
T | q—»—r { i
L3 unified cache g -
(shared by all cores) | L3 unified cache d—bm
— 1 30MB, 20-way !
1 % ﬁ
utlllzauon utilization utilization i
Main memory Cacheline size: 64B for i
all level of caches Instruction lssue- Efficiency Cache I-jstf.#hss _Cache Hit/Miss Utilization
Instruction Pipeline Statistics Utilization Utilization by Op Type

Stall Reasons Efficiency Utilization by Client |

Opt. Space Analysis - Roofline Model

The roofline model is an intuitive visual performance model used to provide performance
estimates of a given kernel or application, by showing inherent hardware limitations,
potential benefit and priority of optimizations. [Wikipedia]

e Work

= The work W denotes the number of operations performed, and
in most cases, W is expressed as FLOPs

e Memory traffic

= The memory traffic () denotes the number of bytes of memory
transfers incurred during the execution

e Arithmetic intensity

= The arithmetic intensity I is the ratio of the work W to
the memory traffic Q@

https://en.wikipedia.org/wiki/Roofline_model

Opt. Space Analysis - Roofline Model

Roofline model only focus on 1~2 dominant components

Example: CPU DRAM Roofline

Floating point operaraons (W)
Total data movement (Q)

Arithmetic intensity(]) = (FLOPs/Byte)

For Matrix Multiplication of two n X m matrices

e Floating point operaraons = 2n° = O(n3)

« Total data movement = 3n? = O(n?)

on’

e Arithmetic intensity I = 3%

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual
performance model for multicore architectures." Communications of the ACM 52.4 (2009): 65-76.

Opt. Space Analysis - Roofline Model

Sustainable performance 1s bound by

) 78
P = min
B x1I
e P: Attainable performance L e A
10°F & 8
e m:. Peak performance g i
i N
i - P '
e 3: Peak bandwidth I - PR e,
. . . . (31027 -
e J: Arithmetic intensity o f
8 I s i
= B I compute bound |
E i]
o sl . !
E 10’ 5 | memory bound | =
: |
|
|
I]
nl S BN AR IR ol Sriri T
10" 10° 10

Computational intensity / [flop/byte]

Opt. Space Analysis - Roofline Model

+ GPU Speed Of Light Throughput GPU Throughput Rooflines

High-level overview of the throughput for compute and memory resources of the GPU, For each unit, the throughput reports the achieved percentace of utilization with respect to the theoretical maximum. Breakdowns show the
throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.

Compute (5M) Throughput [%] 86.42 | Duration [msecond] 1.14
Memory Throughput [%] 8.84 | Elapsed Cycles [cycle] 1,557,889
L1/TEX Cache Throughput [%] 8.45 [SM Active Cycles [cycle] 1,477,479.37
L2 Cache Throughput [%] 8.97 | SM Frequency [cycle/nsecond] 1.36
a8

DRAM Throughput [%] .24 [DRAM Frequency [cyclefn=second] 6.78

The kernel is utilizing greater than 80.0% of the available compute or memo erformance of the device. To further improve performance, work will likely need to be shifted from the most utilized to another
(i) Bottleneck 49 P e P P v
unit. Start by analyzing workloads in the section.

(i) Roofline Analysis The ratio of peak float (fp32) to double (fp64) performance on this device is 32:1, The kernel achieved close to 1% of this device's fp32 peak performance and 0% of its fp64 peak performance.

Floating Point Operations Roofline

Performance [FLOP/s]
[1=1e+12)

Single Precision Achieved Value

Arithmetic Intensity [FLOP/bytel:

Performance [FLOP/s]:
10

Arithmetic Intensity [FLOP/byte]

Opt. Space Analysis - Other Models

Learning-based Statistical Cost Model

e Adapt to different hardware type by learning

v

\
Program Optimizer Code Generator Program

+ _Learning /

Training data

Chen, Tianqgi, et al. "{TVM}: An automated {End-to-End} optimizing compiler for deep
learning." 13th USENIX Symposium on Operating Systems Design and Implementation (0SDI
18).2018.

2.3 Where to optimize?

Where to optimize? - Amdahl's law

The slowest part — bottleneck/hotspot

Amdahl's law is a formula which gives the theoretical speedup in latency of the execution of
a task at fixed workload that can be expected of a system whose resources are improved.
[Wikipedia]

Amdahl's law can be formulated in the following way:
1 < 1
l-p)+2 " 1-p

Slatency (8) — (

* Siatency(8): Theoretical speedup of the whole task

e s: Speedup of the part of the task that benefits from improved
system resources

e p: Proportion of execution time that the part benefiting from
improved resources originally occupiled

https://en.wikipedia.org/wiki/Amdahl%27s_law

Hotspot Analysis

Use hotspots analysis to find the bottleneck of the program
Methods:

e Analytical

e Hardware simulator

e Profile: sampling some usage of a resource by a program

e Trace: collecting highly detailed data about the execution

Advanced Hotspots Hotspots - &

ELVTUNE PROFILER

ysis Config c Log ¥ | Bottom-up | CallerCaliee Top-down -
Grouping| Function / Call Stack Jx]e]l=]
T CPU Time ¥ | Context Switch Time [« .Cuntext Switc ~
Function / Call Stack Effective Time by Utilization a : Overhead |
Side BPoor 80k Bideal B Over Spin Time Time Wait Time | | Inactive Time | Preemption
v updateBusinessAccount 7.9155 B r 1] 0s 05 0s 0. 0555 934
+ mainSompSparallel_for@269 | 7.915s 1] 0s 0s 0Os 0.055s 934 e kgt 1/ mod ot
"Gios g N TN T T T
» B updateBusinessAccount 0s [0s Os 0.013s 119 ol A 5 i
callimpl (/home/ncj/.conda. = 5 i~ | grad (/home._.
» updateCustomerAccount 7.766s |0 0s 0s 0s 0.052s 1,111 forward fhomeni/neursh<- | toch.CE
- ‘ TrEETE | vt
» __kmpc_atomic_fixed8_add 2772s VD 0s 0s Rras e s ﬂ = -
» __kmpc_critical 0s 20218 0s 0s 0.014s 262 v |
o > < » [y (il LT i
O b e o 55 525 54s 565 5.8s s 6.25 ‘E Thread w |

™
[Preemption

rtmtest_openmp (TID: 12732) [“I1Synchronization

o e ess 1 7. | MMM - .-,

CPU Time sSpin and Overh
- [0 ®CPU_CLK_UNH... +

Thread

FILTER 100.0% 4 | | Any Proc ~| | Any Thread ~ || Any Moc ~| [Any L~ [} |User|unmiv| | Show inl || Functior

2.4 General Optimization Pipeline

General Optimization Pipeline

. Determine your baseline code

. Run performance test

. Is optimization target reached? (Optimization Space Analysis)
. Find bottleneck (Hotspot Analysis)

. Optimize the bottleneck

. Go to 2.

o O N N N -

3 Practical Optimization
Stretagiles

Optimization Strategies

Algorithm optimization
= reduce complexity

= space for time

Code optimization
= remove redundancy
= reduce precision

Compile/running parameter optimization

Hardware optimization

3.1 Algorithm Optimization

Alg. Optimization - Reduce Complexity

The following code is the fast inverse square root implementation
from Quake III Arena, and the 2nd Newton iteration can be removed
to reduce complexity with cost of precision

float Q_rsqrt(float number) {
long 1i;
float x2, y;
const float threehalfs

1.5F;

b
N
1]

number *x 0.5F;

number;

* (long *) &y; // evil floating point bit 1level hacking
Ox5f3759df - (1 > 1); // what the fuck?

* (float *) &i;

y * (threehalfs - (x2 *xy *xy)); // 1st iteration

< < KH R <
1l

//] Yy =y * (threehalfs - (x2 *y xy)); // 2nd iteration, this can be removed

return y;

Alg. Optimization - Trade space for time

Lookup tables are used to accelerate CRC32 computation.

uint32_t poly8_lookup[256] = {
0x00000000, 0x77073096, OXEEOGE612C, 0x990951BA,
0x076DC419, Ox706AF48F, OxE963A535, Ox9E6495A3,
OxOEDB8832, 0x79DCB8A4, OxEOD5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, OxE7B82D07, 0x90BF1D91,
/l ...

Alg. Optimization - Parallelization

Sum a large array

Values (shared memory)| 10| 1|8 |1 |0 |23 |5 |-2|3|2|7]|0]11]0]?2

Step 1 Thread
Stride 8 IDs
Values
Step 2 Thread
Stride 4 IDs
Values
Step 3 Thread
Stride 2 IDs
Values |21 /2013 (13| 0 | 9 (3 | 7 |-2|-3|2 |7 |0]|11M|0] 2
Step 4 Thread
Stride 1 IDs

Values | 412013 13| 0 | 9 |3 |7 |-2|-3|2 |7 |[0]|11| 0|2

Alg. Optimization - Prefetch & Prediction

e Locality of high-Tlevel logic

= Web page prefetching/Data preloading

= Contributes to locality at lower-levels
e Instruction level

= Branch prediction

Alg. Optimization - Cachilng

e Stores results from previous executions
= Directly returns stored results
= Requirement: pure function
o Return values are identical for identical arguments
= Add cache i1nvalidation for non-pure ones
e Limited cache size
= LRU/Set Associativity

Alg. Optimization - Lock-Free

e Locks are needed for
concurrency

Critical Section

* We are expecting 20,000 (2 times 10,000)

e However , Lock — Wa iting » However we are getting weird results:
(e.g. spinlock) s I
17930 D/USE MULTI-THREADIN
18185 —
19362 RN

= Waste CPU resources

e Use atomic primitives
= CAS (Compare and Swap)
= Atomic_Add

e Negative example

= GIL in Python 8
8\ f8 8\;’:
x v

Alg. Optimization - Load Balancilng

Avoid load imbalance (FFriB“—A&cEX, H&ZEM")

3.2 Code Optimization

Code Optimization - Remove Redundancy

Before: After:

if (fn(1) = 0 && fn(1) < 10) { auto fnlval = fn(1);
do_fnl_between_0_10(); if (fnlval = 0 && fnlval < 10) {

} else if(fn(1) = 10 && fn(1) < 1000) { do_fnl_between_0_10();
do_fnl_between_10_1000(); } else if(fnlval = 10 && fnlval < 1000) {

} else { do_fnl_between_10_1000();
do_fnl_unknown_state(); } else {

} do_fnl_unknown_state();

Code Optimization - Reduce Precision

L4 H i g h - p P e C i S i 0 n d a -t a IEEE half-precision 16-bit float

sign exponent (5 bit) fraction (10 bit)
[1 I |
= Take up lots of space T T ————

= Large computation cost brlatis

sign exponent (8 bit) fraction (7 bit)
I 1T 1

= Consume lots of resources sletirr e ol falofofolels
L S a V e b 0 t h m e m 0 P y & NVidia's TensorFloat (19 bits)
. . sign exponent (8 bit) fraction (10 bit)
computation by reducing T T T
precision e vt i

- F P 8 , F P 1 6 , F P 3 2 , F P 6 4 , sigln exponent (7 bit) fraction (16 bit)

I | 1
o|o|f1/1/1(1|/0jO0OfO}| 4 | O|0 O O|O|O(fO/O/O(O(O|O0|O|0O

FP128 23 22 16 15 0
= INT1, INT4, INT8, INT16, o aponent 0 racton (15

INT32, INT64, INT128 LTI e o1

23 22 15 14 0
L] L] L]
L M lX - p P e C l S l 0 n IEEE 754 single-precision 32-bit float
sign exponent (8 bit) fraction (23 bit)
[1 I]
m PyTopch AMP olo/1/1 1 1 1 00l 0o 1]0 o ololololooooloooloooooo oo
31 30 23 22 0

= Transformer Engine

Code Optimization - Reduce Branching

e Range comparison w/ binary Aftep:
decomposition
= Binary Search Tree assert(v = 0 §& v < 100);

° Sklp LlSt if (v =2 50) {

if (v = 75) {
Before: /] 75..99

} else {

// 50..74

assert(v = 0 & v < 100);

. }
if (v = 75) { } else {
// 75..99 if (v = 25) {
} e'Ls/,/e ;; (;42 50) { /] 25..49
0 } else {
} else if (v = 25) { /] 0..24
// 25..49)
}
} else { }
// 0..24

Code Optimization - Vectorization

What is vectorization?

e Scaler computation: a=2-a

e Vector computation: a=2-a
= [a, b, c, d] = [2a, 2b, 2c, 2d]

Methods:

e High-level: vectorized computation graph
e Instruction-level: SIMD instructions

Enjoy your lab2~

Code Opt. - Optimize Memory Access Locality

For GEMM

e Blocking
e Loop Permutation/Unrolling
e Array Packing

Enjoy your following labs~

Code Optimization - Adjusting Modifiers

Just as the fibonacci function, we can use constexpr and const to
hint the compiler to optimize the code

#include <cstdio>

static constexpr long long fibonacci(int i) {
return 1 < 2
? 1
: fibonacci(i - 1) +
fibonacci(i - 2);
+
int main() {
const int k = 5;
printf("fib(%d)=%11d\n", k, fibonacci(k));
return 0O;

Code Opt. - Instruction/Data Alignment

e Optimize CPU memory access
e Usually done automatically by compilers

bank 1 bank 2

o e e e
| B bit | 8 bit |
e e e e
I i |
e ¢
| 4 | 5 | «<== the CPU can fetch only values on the same " row"
o ———————————
| 2 | 3 |
o e e e
| @ | 1 |
e e e e e e e e e
\ /N i

data bus (to uP)

Discussion: Man v.s. Compiler

When do we need manual optimization?

Domain Specific Language

— (b) Fast C++ (for x86) : 0.90 ms per megapixel —

void fast_blur(const Image &in, Image &blurred) {
ml28i one_third = _mm setl _epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
ml28i tmp[(256/8)*(32+42)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
ml28i »tmpPtr = tmp;
for (int y = -1; y < 32+1; y++) {
const uintlé_t xinPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8)
a = _mm loadu_sil28((.ml28ix) (inPtr-1));
b = mm loadu_sil28((_.ml28ix) (inPtr+l));
¢ = mm load sil28((..ml28ix) (inPtr));
_mm_add_epil6(_mm add epil6é(a, b), c);
_mm_mulhi_epil6(sum, one_third);
_mm_store_sil28 (tmpPtr++, avg);
inPtr += 8;
1}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
-ml28i xoutPtr = (.ml28i =) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8)
a _mm_load sil28 (tmpPtr+(2x256)/8);

]
womi

b = mm load sil28 (tmpPtr+256/8);

c = mm load sil28 (tmpPtr++);

sum = _mm_add_epil6(_mm_add epil6(a, b), c);
avg = _mm _mulhi_epil6(sum, one_third);

mm_store_sil28 (outPtr++, avg);

i T

(c) Halide : 0.90 ms per megapixel

Func halide_blur (Func in) {
Func tmp, blurred;
Var x, y, xi, yi;

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)
.vectorize (xi, B8) .parallel(y);

tmp.chunk (x) .vectorize(x, 8);

return blurred;

Ragan-Kelley, Jonathan, et al. "Decoupling algorithms from schedules for easy optimization of
image processing pipelines." ACM Transactions on Graphics (T0G) 31.4 (2012): 1-12.

3.3 Compile/Running Parameter Optimization

Compile/Running Parameter Tuning

e Adjust Running Scale

e Adjust Cache Size

e Adjust Core Affinity
= NUMA

Discussion: Is Parameter-tuning
Optimization?

e Adapts general code to local machine

e Auto-tuning
= Black-box method: TVM (learning-based), etc.
= Analytical: Alpa (Dynamic programming, etc.)

3.4 Hardware Optimization

Different Hardware

CPU — GPU — ASIC/DSA/FPGA

CPU
(Intel Core
i7-7700k)

GPU
(NVIDIA
RTX 3090)

GPU
(Data Center)
NVIDIA A100

TPU
Google Cloud
TPUv3

Cores Clock
Speed

10 4.3 GHz

10496 1.6 GHz

6912 CUDA, 1.5 GHz
432 Tensor

2 Matrix Units ?
(MXUs) per
core, 4 cores

Memor
y

System
RAM

24 GB
GDDR
6X

40/80
GB
HBM2

128 GB
HBM

Price

$385

$1499

$3/hr
(GCP)

$8/hr
(GCP)

Speed

~640 GFLOPs FP32

~35.6 TFLOPs FP32

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

~420 TFLOPs
(non-standard FP)

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“‘dumber”; great for
parallel tasks

TPU: Specialized
hardware for deep
learning

Different Hardware (Cont.)

128 Entry 32 KB Instruction Cache _
(8 wa N
IILB () Shared Bus
T~ 128 Bit Interface
\ lni Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/cik)
y 32 Byte Pre-DeCOde, Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
: Fetch Buffer y Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Instruction # 6 Instructions
Fetch Unit 2 INT32INT32 FP32FP32 FPes INT32INT32 FP32 FP32 FP64
18 Entry
l‘ |r‘|StI’UCtIDn QUEUE INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
Il I 1 >
¢ * ¢ > INT32INT32 FP32FP32 FPe4 INT32 INT32 FP32FP32 FPe4
INT32INT32 FP32FP32 FPe4 INT32INT32 FP32FP32 FPe4
Micro- Complex | | Simple Simple Simple ¥ TENSOR CORE TENSOR CORE
code | |Decoder Decoder| | Decoder | | Decoder INT32INT32 FP32 FP32 FP64 INT32 INT32 |FP32 FP32 FP64
4 yops 1 pop #1 B INT32INT32 FP32FP32 FP64 INT32INT32 FP32[FP32 FPe4
\—ﬁ pop 1 pop
A INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
7+ Entry uop BUffer SharEd INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
—_— » |2 Cache
u p LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
CEEE Tabi (16 Way) ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST
egister Allas lable
and Allocator
4 pops 4 jops ‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
256 Ent
96 Entry Reorder Buffer (ROB) 1y
L2 DTLB Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
4 pops i
INT32INT32 FP32FP32 FPes4 INT32INT32 FP32 FP32 FP64
-4 32 Entry RESENatIOH Statlon INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
Port 0 Port 1 Port 5] Port 3 Porta| Port2
| ¥ v ¥ v . v v INT32INT32 FP32FP32 FP64 INT32 INT32 FP32FP32 FPe4
SSE SSE 5
ALU INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
ALU Shuffle ALU shuffie | | g B Sl S Lt TENSOR CORE TENSOR CORE
ALU MUL L4 ALU Address Data Address INT32INT32 FP32(FP32 FPe4 INT32INT32 FP32FP32 FP64
Y h J ¢ i ¢ INT32INT32 FP32FP32 FPe4 INT32INT32 FP32 FP32 FP64
128 Bit . T
EMUL 128 Bit Memory Ordering Buffer INT32INT32 FP32FP32 FPe4 INT32INT32 FP32FP32 FPe4
FADD
FDIV (MOB INTs2inT32 FP32 PR32 FPed INTs2inT3s2 FP32 PR32 Fpes
[+) A + !) y 4 Store NG Load LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
Internal Results Bus 128 Bit \\256 ST ST ST ST ST ST ST ST ST ST ST ST ST ST sT
128 Bit v L Bit
32 KB Dual Ported Data Cache | 16 Entry | |
(8 way) DTLB

Intel Core 2 Architecture

Hardware Optimization - DPU

DPU - System on a chip that combines

e Industry-standard, high-performance, software-programmable
multi-core CPU

e High-performance network interface
e Flexible and programmable acceleration engines

Management R4S
Ethernet

xFP

Boot Image and Local Storage

Run network and
storage services on the
DPU, saving x86 CPU
cycles, and improving
performance

Highspeed L________| Programable

Ethernet Accelerator
xFP

High Speed
Interconnect

Fast Path Offload Slow Path Processing

. . . . < DPUs can expose
Virtualized Device Functions virtual devices to the x86

I_I_ I_I_ I_I_ server, enabling support
for bare metal servers

PR |

Large number of physical
and virtual device functions

https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/

Hardware Optimization - GPU Chassis

Optimize communication & power usage

NVIDIA A100 80G

PCle Switch
NVIDIA A100 80G

NVIDIA A100 80G
Inspur NF5280M6
I NVIDIA A100 80G

(
I NVIDIA A100 80G
l
I

Single Server ! NVIDIA A100 80G
| PCle Switch
: NVIDIA A100 80G
NVIDIA A100 80G
\ 7

GPU Expansion Chassis

4 HPC Skill Tree

HPC SKkills

e Linux system and common commands

e Cluster maintainment and network management

e Collaborative development and version control

e Script automation

e Complex data analysis and processing

e Manual compilating and 1linking of dependent programs
e Parallel program design, testing and optimization

e Power control and parameter adjustment

Linux System and Common Commands

e Compared with Windows Server, Linux occupies less resources
= Generally the operating system used by servers are Linux

e Ecosystem: Many scientific computing software only have Linux
versions, or have no official support on other systems

€ Linux kernel SCI (System Call Interface) b
Memory Process
1/0 subsystem management management
subsystem subsystem
[Linux kemel N A& Wi N
Virtual File System ; .
y Virtual Signal
Terminals Sockets File systems memory handling
Q
= block layer Pagin
; gng Qlproccserien:
M) protocols bag S
0 Linux kernel replacement termination
ﬁ Linux kernel I/O SChedUler
Packet Scheduler
Character Network Block Page LF',”r‘g‘ é‘:s”g'
device device device cache
) . y Scheduler
drivers drivers drivers
> 4 4R .
(R ~~~ Dispatcher)

Linux System and Common Commands (Cont.)

Shells that are commonly used in Linux:

e Ash
e Bash
e /sh

Why we need shells?

e In many cases, there 1s no GUI on servers
= To save resources and reduce maintenance costs
e Remote GUI access 1s not provided

Cluster Maintanence and Network Management

Including

e (Un)Installation of various software and environment

Software and hardware troubleshooting
= Network problem troubleshooting

Job submission & scheduling system (slurm, LSF, Spark...)

Cluster status monitoring
TaaS, PaaS

Provide a stable and efficient computing environment

Characteristics: troublesome

Collaborative Dev. and Version Control

Cooperation awareness, team spirit,

Use version control software (mainly Git)

Software engineering

Documentation, annotation
Communication skills

Script Automation

When running a script that takes a long time, running it manually
requires a lot of effort

To be—tazy improve efficiency, use automated scripts instead of
manual operations
e Linux shell scripts
= Usually used for simple/general tasks
e Scheduling system scripts

= Used for job submission and monitoring

Complex Data Analysis and Processing

Statistics, preprocessing, feature engineering

Graphing

Papers related to specific fields

Big/Massive Data processing capabilities

Understanding of data structures

Data loading skills (e.g., how to load data larger than RAM)

Almost every science in modern times 1s data science

Need to read relevant literature to understand the efforts of
predecessors

Manual Compilating and Linking of Dependent
Programs

e Understand the compilation process
e Configure the compilation and running environment
e Process the dependencies of the program

Parallel Program Design, Testing and
Optimization

e Design
e Test
e Optimize

Just as we discussed before, enjoy your following labs

Power Control and Parameter Adjustment

Why do we need power control?
e Mainly to meet the needs of competitions and practical

applications

= ITn some competitions we participated 1n, the total power of
the cluster cannot exceed 3kW

= In some practical applications, the power consumption of the
cluster 1s expected to be as low as possible

e Need to obtain the optimal operating parameters
Methods:

e Adjust the frequency (CPU, GPU, Memory, etc.)
e Adjust the fan speed
e Adjust the operating scale (such as the batch size)

That's all for today

Thank you for your attention

