
HPC Methodology

 @

2024/7/3

Yusux ZJUSCT

1

https://github.com/Yusux
https://github.com/ZJUSCT

Today's Content

Basic Theories for HPC

Performance Analysis and Optimization Methodology

Practical Optimization Stretagies

HPC Skill Tree

2

1 Basic Theories for HPC

3

Factors Affecting Performance

Physics
(Power Supply, Cooling Device, etc.)

Hardware
(Server, CPU, GPU, SSD, etc.)

Software
(OS, Computation/Communication Libs)

Models
(Compute, Networking, Storage)

Algorithms

More AbstractLimited By

4

High-Level Models

Compute

Program, Function, Programming language, Computation Graph

lynn Models (SISD, SIMD, MISD, MIMD), SIMT

...

Storage

Database: Relational, KV, Graph

Storage System: Block, Object, File

...

Networking

I/O: Blocking, Signal-Driven, Asynchronous

Communication Mode: P2P, Collective Communication

...

5

Software: Implementation of Models

Host OS

Compute Library

BLAS, FFT

OpenMP, pthreads, TBB, Intel MKL, Nvidia CUDA

...

Storage

File System: Local, Remote, Distributed

...

Communication Library

MPI, Gloo, NCCL

...

6

Software: Implementation of Models

Host OS

Compute Library

BLAS, FFT

OpenMP, pthreads, TBB, Intel MKL, Nvidia CUDA

...

Storage

File System: Local, Remote, Distributed

...

Communication Library

MPI, Gloo, NCCL

...

7

Hardware: Operated by Software

Server

Processing Units

CPU, GPU, NPU, FPGA

Related: Cache, Memory

...

Storage Hardware

HDD, SSD, NVMe

RAID

...

Networking

Ethernet, IB

Smart NIC, DPU, IPU

...

8

Example: Matrix Multiplication - Algorithm

Consider , where are huge matricesY = A ⋅ B A,B

AB ​ =ij ​A ​ ⋅
k=1

∑
n

ik B ​kj

9

Example: Matrix Multiplication - Models

We decide to run it in parallel

Assuming we divide it into 3 small matrix multiplication tasks

Compute on 3 different processing units

Distribute workload & gather results via network

10

Example: Matrix Multiplication - Software

For each small matrix multiplication

We use BLAS for efficient computing

For workload distributing & result gathering

We use MPI for communication

11

Example: Matrix Multiplication - Hardware

We use BLAS on CPU/GPU

More efficient/powerful CPU/GPU -> higher performance

For computation, GPUs are usually faster

We use MPI on InfiniBand

Larger throughput & lower latency

12

Example: Matrix Multiplication - Physics

All these hardware may be subject to physical limitations

Do not let them overheat or run out of power

13

2 Performance Analysis and

Optimization Methodology

14

2.1 What is optimization?

15

What is optimization?

Before Manual Optimization: After Manual Optimization:

#include <cstdio>

long long fibonacci(int i) {

if(i <= 2) {

return 1;

 } else {

return fibonacci(i - 1)

 + fibonacci(i - 2);

 }

}

int main() {

int k = 5;

printf("fib(%d)=%lld\n", k,

fibonacci(k));

return 0;

}

#include <cstdio>

static constexpr long long

fibonacci(int i) {

return i <= 2

 ? 1

 : fibonacci(i - 1) +

fibonacci(i - 2);

}

int main() {

const int k = 5;

printf("fib(%d)=%lld\n", k,

fibonacci(k));

return 0;

}

16

What is optimization?

Before Manual Optimization: Compilation Result

(gcc 13.2.0, -O2):

#include <cstdio>

long long fibonacci(int i) {

if(i <= 2) {

return 1;

 } else {

return fibonacci(i - 1)

 + fibonacci(i - 2);

 }

}

int main() {

int k = 5;

printf("fib(%d)=%lld\n", k,

fibonacci(k));

return 0;

}

... ;(omitted)

293 main:

294 sub rsp, 8

295 mov edi, 5

296 call _Z9fibonaccii

297 mov esi, 5

298 mov edi, OFFSET FLAT:.LC0

299 mov rdx, rax

300 xor eax, eax

301 call printf

302 xor eax, eax

303 add rsp, 8

304 ret

https://godbolt.org/z/rax365P1P

17

https://godbolt.org/z/rax365P1P

What is optimization?

After Manual Optimization: Compilation Result

(gcc 13.2.0, -O2):

#include <cstdio>

static constexpr long long

fibonacci(int i) {

return i <= 2

 ? 1

 : fibonacci(i - 1) +

fibonacci(i - 2);

}

int main() {

const int k = 5;

printf("fib(%d)=%lld\n", k,

fibonacci(k));

return 0;

}

.LC0:

 .string "fib(%d)=%lld\n"

main:

sub rsp, 8

mov edx, 5

mov esi, 5

xor eax, eax

mov edi, OFFSET FLAT:.LC0

call printf

xor eax, eax

add rsp, 8

ret

https://godbolt.org/z/3KKcKEjWa

18

https://godbolt.org/z/3KKcKEjWa

What is optimization?

After Manual Optimization

(another way):

Failed O2 Optimization

(k = 93, since):

Another example

():

#include <cstdio>

int main() {

puts("fib(5)=5");

return 0;

}

fib(93) > 263

https://godbolt.org/z/YrYx3eKbz

Collatz Conjecture

bool collatz(int x) {

while (true) {

if (x <= 1) return true;

if (x % 2) x >>= 1;

else x = 3*x + 1;

 }

}

_Z7collatzi:

mov eax, 1

ret

https://godbolt.org/z/exfEjdshj

19

https://godbolt.org/z/YrYx3eKbz
https://en.wikipedia.org/wiki/Collatz_conjecture
https://godbolt.org/z/exfEjdshj

What is optimization?

For example, maximize/minimize subject to

: decision (selection within available alternatives)

: objective function

: constraints (criteria)

Mathematical optimization or mathematical programming is the selection of a best element,

with regard to some criteria, from some set of available alternatives. [Wikipedia]

f(x) x ∈ Ω

x

f(x)

Ω

20

https://en.wikipedia.org/wiki/Mathematical_optimization

What is optimization? (Back to HPC)

In our case:

Goal: Maximize performance

Speed

Throughput

Latency

...

Criteria: Limited resources

Restricted hardware

Limited Power

Limited Quota

...

Alternatives

Physics
(Power Supply, Cooling Device, etc.)

Hardware
(Server, CPU, GPU, SSD, etc.)

Software
(OS, Computation/Communication Libs)

Models
(Compute, Networking, Storage)

Algorithms

21

2.2 Should I optimize?

22

Should I optimize?

Is performance critical to my program?

One-time small programs, just run them slowly

I can wait till tomorrow to see the results, just play and

wait for it

Is there room for optimization?

Performance Test

Optimization Space Analysis

23

Performance Test

Just directly run the program and see how long it takes (measured

by wall time)

time_t start = get_time_hires();

// loop 100 times to get a more accurate result

// by averaging the time

for(int i = 0; i < 100; i++) {

do_something();

}

time_t stop = get_time_hires();

time_t res = (stop - start)/100;

24

Optimization Space Analysis

We can find the theoretical

upper bounds

CPU/GPU Flops

Memory Accessing Speed

PCIe Bandwidth

Disk/Net IO Speed

...

However, it is somehow still an

open question

Modern/Real-World

architectures are complicated

Turn to use black-box models

25

Opt. Space Analysis - Roofline Model

Work

The work denotes the number of operations performed, and

in most cases, is expressed as FLOPs

Memory traffic

The memory traffic denotes the number of bytes of memory

transfers incurred during the execution

Arithmetic intensity

The arithmetic intensity is the ratio of the work to

the memory traffic

The roofline model is an intuitive visual performance model used to provide performance

estimates of a given kernel or application, by showing inherent hardware limitations,

potential benefit and priority of optimizations. [Wikipedia]

W

W

Q

I W

Q

26

https://en.wikipedia.org/wiki/Roofline_model

Opt. Space Analysis - Roofline Model

Roofline model only focus on 1~2 dominant components

Example: CPU DRAM Roofline

For Matrix Multiplication of two matrices

Floating point operaraons = =

Total data movement = =

Arithmetic intensity

Arithmetic intensity(I) = ​ (FLOPs/Byte)
Total data movement (Q)

Floating point operaraons (W)

n × n

2n3 O(n)3

3n2 O(n)2

I = ​ =3n2
2n3

​n =3
2 O(n)

Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual

performance model for multicore architectures." Communications of the ACM 52.4 (2009): 65-76.

27

Opt. Space Analysis - Roofline Model

Sustainable performance is bound by

: Attainable performance

: Peak performance

: Peak bandwidth

: Arithmetic intensity

P = min ​{π
β × I

P

π

β

I

28

Opt. Space Analysis - Roofline Model

29

Opt. Space Analysis - Other Models

Learning-based Statistical Cost Model

Adapt to different hardware type by learning

Chen, Tianqi, et al. "{TVM}: An automated {End-to-End} optimizing compiler for deep

learning." 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI

18).2018.

30

2.3 Where to optimize?

31

Where to optimize? - Amdahl's law

The slowest part -> bottleneck/hotspot

Amdahl's law can be formulated in the following way:

: Theoretical speedup of the whole task

: Speedup of the part of the task that benefits from improved

system resources

: Proportion of execution time that the part benefiting from

improved resources originally occupied

Amdahl's law is a formula which gives the theoretical speedup in latency of the execution of

a task at fixed workload that can be expected of a system whose resources are improved.

[Wikipedia]

S ​(s) =latency ​ ≤
(1 − p) + ​

s
p

1
​

1 − p

1

S ​(s)latency

s

p

32

https://en.wikipedia.org/wiki/Amdahl%27s_law

Hotspot Analysis

Use hotspots analysis to find the bottleneck of the program

Methods:

Analytical

Hardware simulator

Profile: sampling some usage of a resource by a program

Trace: collecting highly detailed data about the execution

33

2.4 General Optimization Pipeline

34

General Optimization Pipeline

1. Determine your baseline code

2. Run performance test

3. Is optimization target reached? (Optimization Space Analysis)

4. Find bottleneck (Hotspot Analysis)

5. Optimize the bottleneck

6. Go to 2.

35

3 Practical Optimization

Stretagies

36

Optimization Strategies

Algorithm optimization

reduce complexity

space for time

...

Code optimization

remove redundancy

reduce precision

...

Compile/running parameter optimization

Hardware optimization

37

3.1 Algorithm Optimization

38

Alg. Optimization – Reduce Complexity

The following code is the fast inverse square root implementation

from Quake III Arena, and the 2nd Newton iteration can be removed

to reduce complexity with cost of precision

float Q_rsqrt(float number) {

long i;

float x2, y;

const float threehalfs = 1.5F;

 x2 = number * 0.5F;

 y = number;

 i = * (long *) &y; // evil floating point bit level hacking

 i = 0x5f3759df - (i >> 1); // what the fuck?

 y = * (float *) &i;

 y = y * (threehalfs - (x2 * y * y)); // 1st iteration

// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed

return y;

}

39

Alg. Optimization – Trade space for time

Lookup tables are used to accelerate CRC32 computation.

uint32_t poly8_lookup[256] = {

0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,

0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,

0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,

0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,

// ...

}

40

Alg. Optimization – Parallelization

Sum a large array

41

Alg. Optimization – Prefetch & Prediction

Locality of high-level logic

Web page prefetching/Data preloading

Contributes to locality at lower-levels

Instruction level

Branch prediction

42

Alg. Optimization – Caching

Stores results from previous executions

Directly returns stored results

Requirement: pure function

Return values are identical for identical arguments

Add cache invalidation for non-pure ones

Limited cache size

LRU/Set Associativity

43

Alg. Optimization – Lock-Free

Locks are needed for

concurrency

However, Lock -> Waiting

(e.g. spinlock)

Waste CPU resources

Use atomic primitives

CAS (Compare and Swap)

Atomic_Add

Negative example

GIL in Python

44

Alg. Optimization – Load Balancing

Avoid load imbalance (所谓“一核有难，七核围观”)

45

3.2 Code Optimization

46

Code Optimization – Remove Redundancy

Before: After:

if (fn(1) >= 0 && fn(1) < 10) {

do_fn1_between_0_10();

} else if(fn(1) >= 10 && fn(1) < 1000) {

do_fn1_between_10_1000();

} else {

do_fn1_unknown_state();

}

auto fn1val = fn(1);

if (fn1val >= 0 && fn1val < 10) {

do_fn1_between_0_10();

} else if(fn1val >= 10 && fn1val < 1000) {

do_fn1_between_10_1000();

} else {

do_fn1_unknown_state();

}

47

Code Optimization – Reduce Precision

High-precision data

Take up lots of space

Large computation cost

Consume lots of resources

Save both memory &

computation by reducing

precision

FP8, FP16, FP32, FP64,

FP128

INT1, INT4, INT8, INT16,

INT32, INT64, INT128

Mix-precision

PyTorch AMP

Transformer Engine

48

Code Optimization – Reduce Branching

Range comparison w/ binary

decomposition

Binary Search Tree

Skip List

Before:

After:

assert(v >= 0 && v < 100);

if (v >= 75) {

// 75..99

} else if (v >= 50) {

// 50..74

} else if (v >= 25) {

// 25..49

} else {

// 0..24

}

assert(v >= 0 && v < 100);

if (v >= 50) {

if (v >= 75) {

// 75..99

 } else {

// 50..74

 }

} else {

if (v >= 25) {

// 25..49

 } else {

// 0..24

 }

}

49

Code Optimization – Vectorization

What is vectorization?

Scaler computation:

Vector computation:

[a, b, c, d] => [2a, 2b, 2c, 2d]

Methods:

High-level: vectorized computation graph

Instruction-level: SIMD instructions

Enjoy your lab2~

a = 2 ⋅ a

=a 2 ⋅ a

50

Code Opt. – Optimize Memory Access Locality

For GEMM

Blocking

Loop Permutation/Unrolling

Array Packing

...

Enjoy your following labs~

51

Code Optimization – Adjusting Modifiers

Just as the fibonacci function, we can use constexpr and const to

hint the compiler to optimize the code

#include <cstdio>

static constexpr long long fibonacci(int i) {

return i <= 2

 ? 1

 : fibonacci(i - 1) +

fibonacci(i - 2);

}

int main() {

const int k = 5;

printf("fib(%d)=%lld\n", k, fibonacci(k));

return 0;

}

52

Code Opt. – Instruction/Data Alignment

Optimize CPU memory access

Usually done automatically by compilers

53

Discussion: Man v.s. Compiler

When do we need manual optimization?

Domain Specific Language

Ragan-Kelley, Jonathan, et al. "Decoupling algorithms from schedules for easy optimization of
image processing pipelines." ACM Transactions on Graphics (TOG) 31.4 (2012): 1-12.

54

3.3 Compile/Running Parameter Optimization

55

Compile/Running Parameter Tuning

Adjust Running Scale

Adjust Cache Size

Adjust Core Affinity

NUMA

56

Discussion: Is Parameter-tuning
Optimization?

Adapts general code to local machine

Auto-tuning

Black-box method: TVM (learning-based), etc.

Analytical: Alpa (Dynamic programming, etc.)

57

3.4 Hardware Optimization

58

Different Hardware

CPU -> GPU -> ASIC/DSA/FPGA

59

Different Hardware (Cont.)

60

Hardware Optimization - DPU

 - System on a chip that combines

Industry-standard, high-performance, software-programmable

multi-core CPU

High-performance network interface

Flexible and programmable acceleration engines

DPU

61

https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/

Hardware Optimization - GPU Chassis

Optimize communication & power usage

62

4 HPC Skill Tree

63

HPC Skills

Linux system and common commands

Cluster maintainment and network management

Collaborative development and version control

Script automation

Complex data analysis and processing

Manual compilating and linking of dependent programs

Parallel program design, testing and optimization

Power control and parameter adjustment

64

Linux System and Common Commands

Compared with Windows Server, Linux occupies less resources

Generally the operating system used by servers are Linux

Ecosystem: Many scientific computing software only have Linux

versions, or have no official support on other systems

65

Linux System and Common Commands (Cont.)

Shells that are commonly used in Linux:

Ash

Bash

Zsh

...

Why we need shells?

In many cases, there is no GUI on servers

To save resources and reduce maintenance costs

Remote GUI access is not provided

66

Cluster Maintanence and Network Management

Including

(Un)Installation of various software and environment

Software and hardware troubleshooting

Network problem troubleshooting

Job submission & scheduling system (slurm, LSF, Spark...)

Cluster status monitoring

IaaS, PaaS

...

Provide a stable and efficient computing environment

Characteristics: troublesome

67

Collaborative Dev. and Version Control

Cooperation awareness, team spirit, ...

Use version control software (mainly Git)

Software engineering

Documentation, annotation

Communication skills

68

Script Automation

When running a script that takes a long time, running it manually

requires a lot of effort

To be lazy improve efficiency, use automated scripts instead of

manual operations

Linux shell scripts

Usually used for simple/general tasks

Scheduling system scripts

Used for job submission and monitoring

69

Complex Data Analysis and Processing

Statistics, preprocessing, feature engineering

Graphing

Papers related to specific fields

Big/Massive Data processing capabilities

Understanding of data structures

Data loading skills (e.g., how to load data larger than RAM)

Almost every science in modern times is data science

Need to read relevant literature to understand the efforts of

predecessors

70

Manual Compilating and Linking of Dependent
Programs

Understand the compilation process

Configure the compilation and running environment

Process the dependencies of the program

71

Parallel Program Design, Testing and
Optimization

Design

Test

Optimize

Just as we discussed before, enjoy your following labs

72

Power Control and Parameter Adjustment

Why do we need power control?

Mainly to meet the needs of competitions and practical

applications

In some competitions we participated in, the total power of

the cluster cannot exceed 3kW

In some practical applications, the power consumption of the

cluster is expected to be as low as possible

Need to obtain the optimal operating parameters

Methods:

Adjust the frequency (CPU, GPU, Memory, etc.)

Adjust the fan speed

Adjust the operating scale (such as the batch size)

...

73

That's all for today

Thank you for your attention

74

