Algorithms

(for Game Design)

Session 1: Introductions, Games, Architecture, Engine

Course Objective

* (Gain experience thinking about complex
algorithms

* (Gain a solid understanding of computer game
architectures and algorithms

loaay

* [ntroduction to Games & Computer Games
* [ntroduction to Pygame Engine
* Game Architectures
 Game Loops

« MVC

Textbook: Chapter 0, 1 and 2

Computer Games

 \What is a game”?

@ & ©
| Royal Game of Ur
* \What is a computer game”? c. 2600 BC

* \WWhy do you play computer games”

Genre

* (Genre = classification based on the type of
challenge a game offers

e Can we make a list?

Other Taxonomies

By platform

 PC, console, browser, mobile, VR, AR
By purpose

e Serious, educational, casual

By controller

* Touchscreen, motion capture, dance pad

Why do we build games”

pygame

e Python for writing video games
 Wraps SDL: Simple DirectMedia Layer

e | ow-level access to framebuffer, audio,
mouse, keyboard and joystick

* Portable to many platforms

* In active development since 2000

Moaules

 Modules for controlling different aspects of the
game environment

cdrom playback joystick device
Cursors load cursor images key keyboard device
display control display window Mmouse device
draw simple shapes sndarray | manipulate sounds with
event manages event queue surfarray | manipulate images with
font render text time control timing
image save and load images transform| scale/rotate/flip images

Installation

 Use python version 3.5 or greater
e |[nstall using pip
$ pip3 install pygame
* Check installation with
$ python3 -m pygame.examples.aliens

» Details at pygame.org/wiki/GettingStarted

Warning: Code coming

* A very simple example
 Doesn't look simple = 33 lines long
e But, it does relatively amazing stuff

 Manages a window, draws an image from a
file, etc

 This code In intro1.py « download it and run

#! Jusr/bin/env python3
"' A simple pygame intro example '''
import pygame

screen is a "surface" object

pygame.init()

so is logo

size = width, height = 1024, 768
speed = [3,2]
black = (@, 0, 9)

surface methods let you get
ot Py oot Towi v o) the size (width, height)

logo_width, logo_height = logo.get_size()
logo_x = logo_y = 0

check if the user closed the window

running = True
while running:

for event in pygame.event.get(): .
if event.type == pygame.QUIT: move the Iogo pOSItIOn
running = False
logo_x += speed[0] / . .
logo_y += speed[1] check if going off screen
if logo_x < @ or logo_x + logo_width > width:

speed[@] = -speed[0]
if logo_y < @ or logo_y + logo_height > height: draW a” bIaCk

speed[1] = -speed[1]

screen.fill(black)

screen.b}it(logo,.(logo_x, 10g0_y)) e Nnow Copy/paSte In the Iogo
pygane. display. flipQ) at its (x, y) location

game loop

Game Loop

* Notice the structure of intro1.py
e some initialization stuft
* aloop (while running)
 Game ends when loop is exited

* This is a very common structure for games

Game Loop (2)

 Each time around the loop:
1. Check for inputs (from user, network, ...)
2. Update game state, based on those inputs

3. Draw the next frame, based on that state

Game Loop: intro1.py

* Our loop had this structure
1. Did the user close the window?
2. Add the speed variables to position
« Check if the logo would be outside the window
3. Draw the new frame:
o fill with black

e paste in the logo image in the new location

Philosophy

 Games need to be responsive
» Often needs to check user inputs

e and respond to them

Frame

One picture is rendered (calculated and shown to user) each time
around the loop

e Thisis a frame
You know this from game ads. "FPS" -- frames per second
 |f lower than 30fps, user perceives lag
e Often want 60+fps
Imagine if game state was so complex that updating it took 250ms
« Maximum of 4fps (and only if rendering was quick)

Thus, FPS is usually an important design metric/goal

it Normal structure of a game

initialize_game()

while not done:
*user_inputs, done = get_inputs()
game_state = update_game_state(user_inputs)
render_game(game_state)

BTW: Some languages and systems are built

around this structure -- Arduino, Processing

Historical Example

e Pac-Man, released in 1980

° P|ayer gUideS Pac-Man thrOugh
the maze, eating dots, avoiding —: n |
ghosts =
* Also, eating fruit bonuses b T

o Y T ... AF &

* Eating power pellets, which JAaEts | EEVR) | PSS | ERERES

|et h|m eat the ghOStS
SeORe 40 LiVeS 99

e |f all dots are eaten = next level

f Simplified game loop for Pac-Man
while player.lives > 0:
inputs = get_joystick_data()
player.move(inputs)
for g in ghosts:
if player.collides(g):
player.kill() # or g.kill() if power-up
else:
g.move(player.position)
it Pac-man eats pellets, fruit, power-ups...

ff Generate outputs
graphics.draw()
audio.play(sounds)

Pac-Man

e You can see the basic structure of the game in the code

o Simplified

[B B |

e Attract mode

 Multiple levels

e (Generation of fruits

Regeneration of killed ghosts

Fvent Queue

 Pygame manages user inputs (and a few other
features) with an event queue

e Queue: a list. First-in-First-Out

 Event: an object representing something
happening in the system

e Key presses, window resize, mouse clicks,...

Fvent Queue

e Each time around the game loop, you must
handle all the events in the queue

* You are responding to a user action (mostly) =
event driven code

* Pygame's event module has very extensive
features for handling the event queue

Event Objects

The event queue contains event objects
Each event object has a type attribute

* Then other attributes based on type
type=KEYDOWN has

* key (what's been pressed), mod (are shift, control keys also pressed), unicode,
scancode

type=MOUSEBUTTONDOWN has
* pos (x,y of where the cursor was), button (which was clicked)
type=VIDEORESIZE has

* size (width, height of the new window)

It Example event processing
def get_inputs():
done = left = right = False
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:

done = True

elif event.key == pygame.K_RIGHT:
right = True

elif event.key == pygame.K_LEFT:
left = True

return (left, right, done)

game architecture

Architecture

 Architecture is all about the structure of our
code

 What components you build (objects,
functions, modules)...

 And how they interact (what are the interfaces,
what parameters get passed)

Spaghetti Code

* Architecture matters as your code
gets bigger

T2 | e =

 Even a bad architecture isn't a problem when it
IS easy for you to see and understand and
remember each bit of code

* Spaghetti code has a complex and tangled
control structure

 Difficult to add to or change without error

MVC: model-view-controller

MVC: Model-View-Controller

« MVC is a common architectural style
for GUI, web applications and games

* |'m not saying your games
MUST be MVC, many aren't

* |t's a suggestion that you, as the designer,
should consider

* There may be better structures for your game

Moaqel

Manages the data and operations on the data

e data: stuff like, where are the ghosts, how many
pellets are left on the level, score

Provides a well-defined interface to the data

* Changes to the data structures don't require
changes to the rest of the code

In web and many GUI apps, the model is a database

Model (2)

 Example: Chess Game
 Data: The model knows where all the pieces are
 Which pieces have been captured

* Operations: initializing the board, moving
pieces, weird moves (en passant, castling),
determining if checkmate exists, scoring of
captured pieces, etc.

View

* Provides a way to visualize the data
e Think: Draw the frame
e But also: make the music, rumble, etc

* |n theory: different view components with the same
data from the model

* Often: you want a text-view to aid development

* Or, a special view to help debug

View

 Example: Chess Game
 May be rendered in 2D or 3D
 Perhaps VR

* IPhone vs laptop vs console views

Controller

 Handles input
* Not just from the keyboard/mouse/joystick
* Also, network inputs for multi-player games
 GPS and accelerometer for mobile games

 Maps input actions to model or view actions

Controller (2)

Maps input actions to model or view actions

Input actions are things like: mouse clicked, key
pressed, network message about a shot fired...

Model actions are things like: avatar moved letft,
opponent forfeits, spaceship explodes...

View actions: window resized, instant replay
requested, menu button pressed...

Controller (3)

 Game customizations often result in different
mappings for the controller

 |f arrow keys are normal for movement...
e ... but aleft handed player prefers WASD,

» that's a different mapping (or perhaps a
different controller component)

MVC Advice

* Advice: When programming, start with the model

* Figure out how to store data and what data is
needed

Invoke

behavior gl

state

Changes settings

Interacts
with Visualizes
application Data

object-oriented model/view

OO0

.....................

‘_

A A
* Another common style is to have objects =~
for the items in your game o e W e
« Pac-Man, Ghosts, fruit, the maze, ... seomso wvesss .

* Each object knows its own state, so is part of the model

e Ghost knows its position, how to update (move, turn
to "frightened”, chase mode, etc), ...

* A model component may still keep track of all objects
and tell them when to update state

 Each object knows how to draw itself, so Is part
of the view

« Adraw() method gets called by the view
module

* Image is drawn on the screen, purple if
frightened, animated correctly, ...

00

 You still have a model

e |t has references to objects and calls their update()
method

e You still have a view

» |t has references to objects and calls their draw()
method...

* In the correct order so the rendering works properly

graphic primitives

Graphics

* Most games rely heavily on computer graphics
* Provides visual feedback for players

e Provides guidance to players

History

e Development of algorithms for computer graphics has
been driven by the gaming industry

e Today's tech for VR / ultrarealistic 3D renders are a result

of decades
of Improvements

o Starting with very first : /
video game ever ' /p 1
e Spacewar! L

« 1962, PDP-1 minicomputer s i

ENgine

* An engine provides some level of graphic
algorithms to be embedded in your code

 No need for every game dev to write code for
how to draw a line

 Pygame is an engine for 2D games

* 3D and VR with other engines (Unreal, Unity...)

A Digital Image

930
JJJ@JJJJJ;JJJJ

%]

W,

o

JJJJJ:JJ.JJJJ:JJ.JJJJ:JJ.JJJJ:JJJJJJ:JJJJJHMMH&JMHMMHMMHMMHMMHMMHM

 Animage is just an array of pixels
 Rows and columns

e Each pixel has a color

e Specified by a number

e Usually formed by mixing 8-bit values (thus 0-255) for
red, green, blue and alpha

« Alpha is often neglected or ignored

« A system with 8-bits for RGB, known as "24-bit color’

Colors

e RGB with 8-bit values

e |In Python and Pygame, the color is a tuple

* Red = (255, 0, 0)

e Mario background blue = (112, 136, 242)
 There is also a Color class with extra operations

« Can be specified as 6 hex digits (as a string)

e Red = 'OxFFO000', Mario = '0x/088F2'

Alpha Channels

An extra 8-bits specifies the amount of transparency
e Technically, amount of opagueness

O = transparent

255 = opague

(0, 255, @, 128) is a translucent green

In Pygame, some special handling is required for
alpha-channel objects

The Surface

* In Pygame, a surface is a place to draw
* Think of it as a canvas on which an artist places paint

* Or, as a bank of memory where all those pixels are
stored

* Special surface: the display surface -- will be visible to
the user in the game window

Returned from set_mode method as:

display_surface = pygame.display.set_mode((1024, 768))

Surface (2)

e Other surfaces are possible and quite useful
» Create a surface to draw a picture
e Later, or often, can copy the image to the display

« Commonly, have a background surface

background = pygame.Surface(display_surface.get_size())

e Start every frame render by copying the
background into the display surface

Surface Operations

The Surface object has many possible methods
Only a few are related to drawing

The get_at and set_at methods let you get or
set the color of a pixel at a specific location

background.set_at((x,y), color)

color = background.get_at((x,y))

Notice that the location is a tuple

it draw_notepaper.py
def draw(surface, size_x, size_y):
blue = (@, 9, 200)

red = (200, 0, 0)
white = (255,255,255) background of the page is white

for x in range(size_x):
for y in range(size_y):
surface.set_at((x,y), white)

for y in range(6@, size.y, 20): draw horizontal blue lines
for x in range(size_x):

surface.set_at((x, y), blue)

X = 25
for y in range(@, size_y):
surface.set_at((x, y), red)

draw one vertical red line

There Must Be A Better Way
(TMBABW)

draw_notepaper is PAINFUL, though it works

set_at gets called 251,400 times for a 400x600 sized window

An entire surface can be set to a single color with the fill function

surface.fill(color)

And a line can be drawn between two points with

pygame.draw.line(surface, color, (x@, y@), (x1, y1))

* Note: endpoints don't have to be contained in the surface
dimensions. They will be automatically clipped to only draw the
parts inside the surface

it A better draw_notepaper.py -- now only 30 method calls!!!
def draw(surface, size_x, size_y):

blue = (0, 0, 200)

red = (200, 0, 9)

white = (255,255,255) background of the page is white

surface.fill(white)

for y in range(6@, size_y, 20):
left_side = (@, y)

right_side = (size_x, vy)
pygame.draw.line(surface, blue, left_side, right_side)

draw one vertical red line

pygame.draw.line(surface, red, (25, @), (25, size_y))

Draw module

* |n addition to the 1ine method, other drawing tools are available
in the draw module

» All take a surface as a parameter

pygame.draw.arc(surface, color, rect,

start_angle, stop_angle, width=1)

e arc will draw an elliptical or circular arc from start_angle to
stop_angle (both in radians @)

* Position and dimensions are specified by the rect parameter, a
bounding box

* More details on Rect objects coming

More Draw module

pygame.draw.lines(surface, color, closed, points, width=1)

e lines will draw a series of lines, consecutively connecting (X,y)
tuples in the points list

e |f closed is True, will also connect the last point back to the first

pygame.draw.polygon(surface, color, points, width=1)

e polygon acts similarly, connecting points from a list, but then it fills
INn the enclosed space

pygame.draw.circle(surface, color, center, radius)

* Drawing a circle is pretty obvious

o0 Python Logo

} draw_python.py -- Draw the Python logo
surface.fill(white)

ooints = [(27, 50), (76, 50), (76, 45), (45, 45), (45, 26)]
pygame.draw.lines(surface, blue, False, points)
pygame.draw.arc(surface, blue, (45, 15, 61, 22),
@*radians, 180*radians)
pygame.draw.line(surface, blue, (106, 26), (106, 62))
pygame.draw.arc(surface, blue, (76, 47, 30, 30),
270*radians, @*radians)
pygame.draw.line(surface, blue, (91, 76), (57 ,76))
pygame.draw.arc(surface, blue, (41, 76, 32, 32),
90*radians, 180*radians)
pygame.draw.line(surface, blue, (41, 92), (41, 110))
pygame.draw.line(surface, blue, (41,110), (27, 110))
pygame.draw.arc(surface, blue, (12,50,30, 60),
90*radians, 270*radians)
. many more lines of annoyingly measured points

Rect

 Pygame very, very commonly uses an object called a
Rect to describe a box

e The arc function used it as a bounding box
* Rects are defined by four values

e Rect(x, y, width, height)

e or less commonly, by two pairs of tuples

e Rect((x, y), (width, height))

Rect Methods

pygame.

Rect.copy

Copy the rectangle

pygame.

Rect.move

Returns a moved rectangle

pygame.

Rect.move_1ip

Moves the rectangle, in place

pygame.

Rect.inflate / _ip

grow/shrink the rectangle size (and an in
place version)

pygame.Rect.clip Crops a rectangle inside another rectangle
pygame.Rect.clipline Crops a line inside the rectangle
pygame.Rect.union / _1ip Joins two rectangles into one
pygame.Rect.contains Test if one rectangle is inside another
pygame.Rect.collidepoint Testif a pointis inside a rectangle
pygame.Rect.colliderect Test if two rectangles overlap
pygame.Rect.collidelist Test if the rectangle overlaps with any in a

sequence of Rects

many others

Using Rects with Draw

e Back in the Draw module

 \WWe can draw a rectangle, defined by a Rect

pygame.draw.rect(surface, color, rect, width=0)

 We can draw an ellipse, bounded by a Rect

pygame.draw.ellipse(surface, color, rect, width=0)

t Use Rects for boxes, circles in draw_checkerboard.py
rect = pygame.Rect(strip_size, strip_size, box_size, box_size)
color = black
for row in range(8):
for col in range(8): Draw the box
pygame.draw.rect(surface, color, rect _ _
if row in rows_with_pieces and color == black:
circle_rect = rect.inflate(deflate, deflate) smaller box
pygame.draw.ellipse(surface, white, circle_rect)
rect.move_ip(box_size + strip_size, 0)
if color == black:
color = red
else:
color = black
rect.move_ip(-8*(box_size + strip_size), box_size + strip_size)

1t color == black: Move the rect to the first place in the next row
color = red

else:
color = black

Make rect for the checkerboard box

Move the rect to the next place in the row

images and blit

Pygame Images

 Much of our game graphics will not be created
by calling line, circle, arc, etc

* |nstead, you hire a graphic designer to draw
game assets as images

 Then we will copy those images to various
places on the screen

t = = Optimization = = = =

 Pac-Man's movement is very simple

e Just a circle with a wedge cut out ...

SeQRe 40 LiVeS 29

e But to draw it requires computation (including trig
functions!)

e Performance optimization: Do the computation once
and use the resulting images for the animation

Image Formats

* There are many, many image formats
* You've probably seen: JPG, PNG, GIF

e Fach standardizes how the color values of the
pixel array should be written into a file

* Pygame knows how to load and save

e JPG, PNG, GIF + BMP, PCX, TGA, TIF, LBM,
PBM, PPM and XPM formats

lmage Load / Save

* Relatively straightforward in Pygame
surface = pygame.image.load(filename)

pygame.image.save(surface, filename)

e YOu can pass in a string as the filename, or any Python file-
like object (ex: Path object)

pygame.surface.convert()

e convert will change the format of a surface to match the
display surface

« A good idea for any loaded image, as otherwise it will
need to be converted each time it Is used

SLIT

 Each image loaded results in a separate surface

e But, at the end of the game loop, you need a single
surface for the display

 How do you combine surfaces?

« BLIT (or BITBLIT) is an operation in many computing
systems that copies a block of memory from one location

to another

« For graphical operations, BLIT "pastes’ one image into
another

Pygame Blit

* The Surface object has a blit method for pasting another image
(or portion) into the image

surface.blit(source, dest, area=None, special_flags=0)

 The source parameter is another surface

e dest is a location: (X, y) tuple or Rect with the top-left location
you want

e area can be a Rect that will specify a smaller portion of the
source surface to be pasted

 |f None, then the entire source surface is pasted

Blit example

Destination surface: background

~ RTOETREY
-

Destination location: %]

T T T K :
e | Rect/coordinates

il = e l

Y

~o - 3 g

S A 3 A S A i A A A A A S A R A RS

Source surface: mario Source Area (a Rect)

RELRERARER
sEe FESK

background.blit(mario, dest_rect, area_rect)

¥ render mario

display_surface = pygame.display.set_mode(1200,622)
background = pygame.image.load('mario_background.png').convert()
mario = pygame.image.load('mario_sprites.png').convert()

while not done:
*user_inputs, done = get_inputs()

jump_r = pygame.Rect(254, 13, 42, 49)
display_surface.blit(background, (0,0))
display_surface.blit(mario, (390, 510), jump_r)
pygame.display.flip()

Blit Optimization

* Graphics hardware often handles the entire BLIT,
thus relieving the CPU of lots of byte copies

e Often the blit includes other forms of raster
operations

» special_flags lets you do more than just
paste: ADD, SUB, MULT, MIN, MAX

Colorkey

e Other common blit operations include a form of masking
to allow "background” pixels not to be overwritten

* To get rid of the white box around Mario, we can set the
colorkey for the mario surface

o Specifies a particular color (white in this case) that will
be considered to be transparent

« During a blit, any white pixel will not be copied

e Could also solve this with alpha channels, but assets
must be created with alpha values ahead of time

render mario

display_surface = pygame.display.set_mode(1200,622)

background = pygame.image.load('mario_background.png').convert()
mario = pygame.image.load('mario_sprites.png').convert()

white = mario.get_at((0,0))
mario.set_colorkey(white)

while not done:
*user_inputs, done = get_inputs()

jump_r = pygame.Rect(254, 13, 42, 49)
display_surface.blit(background, (0,0))
display_surface.blit(mario, (390, 510), jump_r)
pygame.display.flip()

Surface Transforms

e pygame.transform module has methods to
manipulate a surface

* You can rotate / scale / chop / greyscale /

e For example:

pygame.transform.rotate(source_surface, angle) - Surface

What did you learn today?

 Games are a part of human nature

* No surprise that humans put them on a
computer

 (Game architectures are important

e For this class, always watch out for the game
loop

What did you learn today?

 Pygame engine is a library with lots of useful
routines

* lines, colors, circles, images, ...
* events

e surfaces

