
Algorithms
(for Game Design)

Session 1: Introductions, Games, Architecture, Engine

Course Objective

• Gain experience thinking about complex
algorithms

• Gain a solid understanding of computer game
architectures and algorithms

Today

• Introduction to Games & Computer Games

• Introduction to Pygame Engine

• Game Architectures

• Game Loops

• MVC

Textbook: Chapter 0, 1 and 2

Computer Games

• What is a game?

• What is a computer game?

• Why do you play computer games?

Royal Game of Ur
c. 2600 BC

Genre

• Genre = classification based on the type of
challenge a game offers

• Can we make a list?

Other Taxonomies
• By platform

• PC, console, browser, mobile, VR, AR

• By purpose

• Serious, educational, casual

• By controller

• Touchscreen, motion capture, dance pad

Why do we build games?

pygame

• Python for writing video games

• Wraps SDL: Simple DirectMedia Layer

• Low-level access to framebuffer, audio,
mouse, keyboard and joystick

• Portable to many platforms

• In active development since 2000

Modules
• Modules for controlling different aspects of the

game environment

cdrom playback joystick device

cursors load cursor images key keyboard device

display control display window mouse device

draw simple shapes sndarray manipulate sounds with
numpy

event manages event queue surfarray manipulate images with
numpy

font render text time control timing

image save and load images transform scale/rotate/flip images

Installation
• Use python version 3.5 or greater

• Install using pip

$ pip3 install pygame

• Check installation with

$ python3 -m pygame.examples.aliens

• Details at pygame.org/wiki/GettingStarted

Warning: Code coming
• A very simple example

• Doesn't look simple ➙ 33 lines long

• But, it does relatively amazing stuff

• Manages a window, draws an image from a
file, etc

• This code in intro1.py ← download it and run

#! /usr/bin/env python3
''' A simple pygame intro example '''
import pygame

pygame.init()

size = width, height = 1024, 768
speed = [3,2]
black = (0, 0, 0)

screen = pygame.display.set_mode(size)
logo = pygame.image.load('pygame_logo.gif')
logo_width, logo_height = logo.get_size()
logo_x = logo_y = 0

running = True
while running:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False

 logo_x += speed[0]
 logo_y += speed[1]

 if logo_x < 0 or logo_x + logo_width > width:
 speed[0] = -speed[0]
 if logo_y < 0 or logo_y + logo_height > height:
 speed[1] = -speed[1]

 screen.fill(black)
 screen.blit(logo, (logo_x, logo_y))
 pygame.display.flip()

screen is a "surface" object

so is logo

surface methods let you get
the size (width, height)

check if the user closed the window

move the logo position

check if going off screen

draw all black

now copy/paste in the logo
at its (x, y) location

game loop

Game Loop

• Notice the structure of intro1.py

• some initialization stuff

• a loop (while running)

• Game ends when loop is exited

• This is a very common structure for games

Game Loop (2)

• Each time around the loop:

1. Check for inputs (from user, network, ...)

2. Update game state, based on those inputs

3. Draw the next frame, based on that state

Game Loop: intro1.py
• Our loop had this structure

1. Did the user close the window?

2. Add the speed variables to position

• Check if the logo would be outside the window

3. Draw the new frame:

• fill with black

• paste in the logo image in the new location

Philosophy

• Games need to be responsive

• Often needs to check user inputs

• and respond to them

Frame
• One picture is rendered (calculated and shown to user) each time

around the loop

• This is a frame

• You know this from game ads. "FPS" -- frames per second

• If lower than 30fps, user perceives lag

• Often want 60+fps

• Imagine if game state was so complex that updating it took 250ms

• Maximum of 4fps (and only if rendering was quick)

• Thus, FPS is usually an important design metric/goal

Normal structure of a game

initialize_game()
while not done:
 *user_inputs, done = get_inputs()
 game_state = update_game_state(user_inputs)
 render_game(game_state)

BTW: Some languages and systems are built
around this structure -- Arduino, Processing

Historical Example
• Pac-Man, released in 1980

• Player guides Pac-Man through
the maze, eating dots, avoiding
ghosts

• Also, eating fruit bonuses

• Eating power pellets, which
let him eat the ghosts

• If all dots are eaten ➙ next level

Simplified game loop for Pac-Man
while player.lives > 0:
 inputs = get_joystick_data()
 player.move(inputs)
 for g in ghosts:
 if player.collides(g):
 player.kill() # or g.kill() if power-up
 else:
 g.move(player.position)
 # Pac-man eats pellets, fruit, power-ups...

 # Generate outputs
 graphics.draw()
 audio.play(sounds)

• You can see the basic structure of the game in the code

• Simplified

• Attract mode

• Multiple levels

• Generation of fruits

• Regeneration of killed ghosts

•

Pac-Man

Event Queue

• Pygame manages user inputs (and a few other
features) with an event queue

• Queue: a list. First-in-First-Out

• Event: an object representing something
happening in the system

• Key presses, window resize, mouse clicks,...

Event Queue

• Each time around the game loop, you must
handle all the events in the queue

• You are responding to a user action (mostly) ➙
event driven code

• Pygame's event module has very extensive
features for handling the event queue

Event Objects
• The event queue contains event objects

• Each event object has a type attribute

• Then other attributes based on type

• type=KEYDOWN has

• key (what's been pressed), mod (are shift, control keys also pressed), unicode,
scancode

• type=MOUSEBUTTONDOWN has

• pos (x,y of where the cursor was), button (which was clicked)

• type=VIDEORESIZE has

• size (width, height of the new window)

Example event processing
def get_inputs():
 done = left = right = False
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_ESCAPE:
 done = True
 elif event.key == pygame.K_RIGHT:
 right = True
 elif event.key == pygame.K_LEFT:
 left = True
 return (left, right, done)

game architecture

Architecture

• Architecture is all about the structure of our
code

• What components you build (objects,
functions, modules)...

• And how they interact (what are the interfaces,
what parameters get passed)

Spaghetti Code
• Architecture matters as your code

gets bigger

• Even a bad architecture isn't a problem when it
is easy for you to see and understand and
remember each bit of code

• Spaghetti code has a complex and tangled
control structure

• Difficult to add to or change without error

MVC: model-view-controller

MVC: Model-View-Controller

• MVC is a common architectural style
 for GUI, web applications and games

• I'm not saying your games
MUST be MVC, many aren't

• It's a suggestion that you, as the designer,
should consider

• There may be better structures for your game

Request
state

Invoke
behavior

Changes settings

Visualizes
Data

Interacts
with

application

Model

Controller View

Model
• Manages the data and operations on the data

• data: stuff like, where are the ghosts, how many
pellets are left on the level, score

• Provides a well-defined interface to the data

• Changes to the data structures don't require
changes to the rest of the code

• In web and many GUI apps, the model is a database

Request
state

Invoke
behavior

Changes settings

Visualizes
Data

Interacts
with

application

Model

Controller View

Model (2)
• Example: Chess Game

• Data: The model knows where all the pieces are

• Which pieces have been captured

• Operations: initializing the board, moving
pieces, weird moves (en passant, castling),
determining if checkmate exists, scoring of
captured pieces, etc.

View
• Provides a way to visualize the data

• Think: Draw the frame

• But also: make the music, rumble, etc

• In theory: different view components with the same
data from the model

• Often: you want a text-view to aid development

• Or, a special view to help debug

Request
state

Invoke
behavior

Changes settings

Visualizes
Data

Interacts
with

application

Model

Controller View

View

• Example: Chess Game

• May be rendered in 2D or 3D

• Perhaps VR

• iPhone vs laptop vs console views

Controller

• Handles input

• Not just from the keyboard/mouse/joystick

• Also, network inputs for multi-player games

• GPS and accelerometer for mobile games

• Maps input actions to model or view actions

Request
state

Invoke
behavior

Changes settings

Visualizes
Data

Interacts
with

application

Model

Controller View

Controller (2)
• Maps input actions to model or view actions

• Input actions are things like: mouse clicked, key
pressed, network message about a shot fired...

• Model actions are things like: avatar moved left,
opponent forfeits, spaceship explodes...

• View actions: window resized, instant replay
requested, menu button pressed...

Controller (3)

• Game customizations often result in different
mappings for the controller

• If arrow keys are normal for movement...

• ... but a left handed player prefers WASD,

• that's a different mapping (or perhaps a
different controller component)

MVC Advice

• Advice: When programming, start with the model

• Figure out how to store data and what data is
needed

Request
state

Invoke
behavior

Changes settings

Visualizes
Data

Interacts
with

application

Model

Controller View

Request
state

Invoke
behavior

Changes settings

Visualizes
Data

Interacts
with

application

Model

Controller View

object-oriented model/view

OO
• Another common style is to have objects

for the items in your game

• Pac-Man, Ghosts, fruit, the maze, ...

• Each object knows its own state, so is part of the model

• Ghost knows its position, how to update (move, turn
to "frightened", chase mode, etc), ...

• A model component may still keep track of all objects
and tell them when to update state

• Each object knows how to draw itself, so is part
of the view

• A draw() method gets called by the view
module

• Image is drawn on the screen, purple if
frightened, animated correctly, ...

OO
• You still have a model

• It has references to objects and calls their update()
method

• You still have a view

• It has references to objects and calls their draw()
method...

• in the correct order so the rendering works properly

graphic primitives

Graphics

• Most games rely heavily on computer graphics

• Provides visual feedback for players

• Provides guidance to players

History
• Development of algorithms for computer graphics has

been driven by the gaming industry

• Today's tech for VR / ultrarealistic 3D renders are a result
of decades
of improvements

• Starting with very first
video game ever

• Spacewar!

• 1962, PDP-1 minicomputer

Engine

• An engine provides some level of graphic
algorithms to be embedded in your code

• No need for every game dev to write code for
how to draw a line

• Pygame is an engine for 2D games

• 3D and VR with other engines (Unreal, Unity...)

A Digital Image
9300

0

393

Origin
X Axis

Y
Ax

is

• An image is just an array of pixels

• Rows and columns

• Each pixel has a color

• Specified by a number

• Usually formed by mixing 8-bit values (thus 0-255) for
red, green, blue and alpha

• Alpha is often neglected or ignored

• A system with 8-bits for RGB, known as "24-bit color"

Colors
• RGB with 8-bit values

• In Python and Pygame, the color is a tuple

• Red = (255, 0, 0)

• Mario background blue = (112, 136, 242)

• There is also a Color class with extra operations

• Can be specified as 6 hex digits (as a string)

• Red = '0xFF0000', Mario = '0x7088F2'

Alpha Channels
• An extra 8-bits specifies the amount of transparency

• Technically, amount of opaqueness

• 0 = transparent

• 255 = opaque

• (0, 255, 0, 128) is a translucent green

• In Pygame, some special handling is required for
alpha-channel objects

The Surface
• In Pygame, a surface is a place to draw

• Think of it as a canvas on which an artist places paint

• Or, as a bank of memory where all those pixels are
stored

• Special surface: the display surface -- will be visible to
the user in the game window

Returned from set_mode method as:
display_surface = pygame.display.set_mode((1024, 768))

Surface (2)
• Other surfaces are possible and quite useful

• Create a surface to draw a picture

• Later, or often, can copy the image to the display

• Commonly, have a background surface

• Start every frame render by copying the
background into the display surface

background = pygame.Surface(display_surface.get_size())

Surface Operations
• The Surface object has many possible methods

• Only a few are related to drawing

• The get_at and set_at methods let you get or
set the color of a pixel at a specific location

• Notice that the location is a tuple

background.set_at((x,y), color)
color = background.get_at((x,y))

draw_notepaper.py
def draw(surface, size_x, size_y):
 blue = (0, 0, 200)
 red = (200, 0, 0)
 white = (255,255,255)

 for x in range(size_x):
 for y in range(size_y):
 surface.set_at((x,y), white)

 for y in range(60, size_y, 20):
 for x in range(size_x):
 surface.set_at((x, y), blue)

 x = 25
 for y in range(0, size_y):
 surface.set_at((x, y), red)

background of the page is white

draw horizontal blue lines

draw one vertical red line

There Must Be A Better Way
(TMBABW)

• draw_notepaper is PAINFUL, though it works

• set_at gets called 251,400 times for a 400x600 sized window

• An entire surface can be set to a single color with the fill function

• And a line can be drawn between two points with

• Note: endpoints don't have to be contained in the surface
dimensions. They will be automatically clipped to only draw the
parts inside the surface

surface.fill(color)

pygame.draw.line(surface, color, (x0, y0), (x1, y1))

A better draw_notepaper.py -- now only 30 method calls!!!
def draw(surface, size_x, size_y):
 blue = (0, 0, 200)
 red = (200, 0, 0)
 white = (255,255,255)

 surface.fill(white)

 for y in range(60, size_y, 20):
 left_side = (0, y)
 right_side = (size_x, y)
 pygame.draw.line(surface, blue, left_side, right_side)

 pygame.draw.line(surface, red, (25, 0), (25, size_y))

background of the page is white

draw horizontal blue lines

draw one vertical red line

Draw module
• In addition to the line method, other drawing tools are available

in the draw module

• All take a surface as a parameter

• arc will draw an elliptical or circular arc from start_angle to
stop_angle (both in radians ☹)

• Position and dimensions are specified by the rect parameter, a
bounding box

• More details on Rect objects coming

 pygame.draw.arc(surface, color, rect,
 start_angle, stop_angle, width=1)

More Draw module
• lines will draw a series of lines, consecutively connecting (x,y)

tuples in the points list

• If closed is True, will also connect the last point back to the first

• polygon acts similarly, connecting points from a list, but then it fills
in the enclosed space

• Drawing a circle is pretty obvious

pygame.draw.lines(surface, color, closed, points, width=1)

pygame.draw.polygon(surface, color, points, width=1)

pygame.draw.circle(surface, color, center, radius)

draw_python.py -- Draw the Python logo
surface.fill(white)

points = [(27, 50), (76, 50), (76, 45), (45, 45), (45, 26)]
pygame.draw.lines(surface, blue, False, points)
pygame.draw.arc(surface, blue, (45, 15, 61, 22),
 0*radians, 180*radians)
pygame.draw.line(surface, blue, (106, 26), (106, 62))
pygame.draw.arc(surface, blue, (76, 47, 30, 30),
 270*radians, 0*radians)
pygame.draw.line(surface, blue, (91, 76), (57 ,76))
pygame.draw.arc(surface, blue, (41, 76, 32, 32),
 90*radians, 180*radians)
pygame.draw.line(surface, blue, (41, 92), (41, 110))
pygame.draw.line(surface, blue, (41,110), (27, 110))
pygame.draw.arc(surface, blue, (12,50,30, 60),
 90*radians, 270*radians)
.... many more lines of annoyingly measured points

Rect
• Pygame very, very commonly uses an object called a
Rect to describe a box

• The arc function used it as a bounding box

• Rects are defined by four values

• Rect(x, y, width, height)

• or less commonly, by two pairs of tuples

• Rect((x, y), (width, height))

x, y

width

height

Rect Methods
pygame.Rect.copy Copy the rectangle
pygame.Rect.move Returns a moved rectangle
pygame.Rect.move_ip Moves the rectangle, in place
pygame.Rect.inflate / _ip grow/shrink the rectangle size (and an in

place version)
pygame.Rect.clip Crops a rectangle inside another rectangle
pygame.Rect.clipline Crops a line inside the rectangle
pygame.Rect.union / _ip Joins two rectangles into one
pygame.Rect.contains Test if one rectangle is inside another
pygame.Rect.collidepoint Test if a point is inside a rectangle
pygame.Rect.colliderect Test if two rectangles overlap
pygame.Rect.collidelist Test if the rectangle overlaps with any in a

sequence of Rects
many others

Using Rects with Draw

• Back in the Draw module

• We can draw a rectangle, defined by a Rect

• We can draw an ellipse, bounded by a Rect

pygame.draw.rect(surface, color, rect, width=0)

pygame.draw.ellipse(surface, color, rect, width=0)

Use Rects for boxes, circles in draw_checkerboard.py
rect = pygame.Rect(strip_size, strip_size, box_size, box_size)
color = black
for row in range(8):
 for col in range(8):
 pygame.draw.rect(surface, color, rect)
 if row in rows_with_pieces and color == black:
 circle_rect = rect.inflate(deflate, deflate)
 pygame.draw.ellipse(surface, white, circle_rect)
 rect.move_ip(box_size + strip_size, 0)
 if color == black:
 color = red
 else:
 color = black
 rect.move_ip(-8*(box_size + strip_size), box_size + strip_size)
 if color == black:
 color = red
 else:
 color = black

Make rect for the checkerboard box

Draw the box

Draw ellipse in
smaller box

Move the rect to the first place in the next row

Move the rect to the next place in the row

images and blit

Pygame Images

• Much of our game graphics will not be created
by calling line, circle, arc, etc

• Instead, you hire a graphic designer to draw
game assets as images

• Then we will copy those images to various
places on the screen

Optimization
• Think back to Pac-Man

• Pac-Man's movement is very simple

• Just a circle with a wedge cut out

• But to draw it requires computation (including trig
functions!)

• Performance optimization: Do the computation once
and use the resulting images for the animation

Image Formats
• There are many, many image formats

• You've probably seen: JPG, PNG, GIF

• Each standardizes how the color values of the
pixel array should be written into a file

• Pygame knows how to load and save

• JPG, PNG, GIF + BMP, PCX, TGA, TIF, LBM,
PBM, PPM and XPM formats

Image Load / Save
• Relatively straightforward in Pygame

• You can pass in a string as the filename, or any Python file-
like object (ex: Path object)

• convert will change the format of a surface to match the
display surface

• A good idea for any loaded image, as otherwise it will
need to be converted each time it is used

surface = pygame.image.load(filename)
pygame.image.save(surface, filename)

pygame.surface.convert()

BLIT
• Each image loaded results in a separate surface

• But, at the end of the game loop, you need a single
surface for the display

• How do you combine surfaces?

• BLIT (or BITBLIT) is an operation in many computing
systems that copies a block of memory from one location
to another

• For graphical operations, BLIT "pastes" one image into
another

Pygame Blit
• The Surface object has a blit method for pasting another image

(or portion) into the image

• The source parameter is another surface

• dest is a location: (x, y) tuple or Rect with the top-left location
you want

• area can be a Rect that will specify a smaller portion of the
source surface to be pasted

• If None, then the entire source surface is pasted

surface.blit(source, dest, area=None, special_flags=0)

Blit example
Destination surface: background

Source surface: mario Source Area (a Rect)

Destination location:
Rect/coordinates

background.blit(mario, dest_rect, area_rect)

render mario

display_surface = pygame.display.set_mode(1200,622)
background = pygame.image.load('mario_background.png').convert()
mario = pygame.image.load('mario_sprites.png').convert()

...
while not done:
 *user_inputs, done = get_inputs()
 ...

 jump_r = pygame.Rect(254, 13, 42, 49)
 display_surface.blit(background, (0,0))
 display_surface.blit(mario, (390, 510), jump_r)
 pygame.display.flip()

Blit Optimization

• Graphics hardware often handles the entire BLIT,
thus relieving the CPU of lots of byte copies

• Often the blit includes other forms of raster
operations

• special_flags lets you do more than just
paste: ADD, SUB, MULT, MIN, MAX

Colorkey
• Other common blit operations include a form of masking

to allow "background" pixels not to be overwritten

• To get rid of the white box around Mario, we can set the
colorkey for the mario surface

• Specifies a particular color (white in this case) that will
be considered to be transparent

• During a blit, any white pixel will not be copied

• Could also solve this with alpha channels, but assets
must be created with alpha values ahead of time

render mario

display_surface = pygame.display.set_mode(1200,622)
background = pygame.image.load('mario_background.png').convert()
mario = pygame.image.load('mario_sprites.png').convert()
white = mario.get_at((0,0))
mario.set_colorkey(white)
...
while not done:
 *user_inputs, done = get_inputs()
 ...

 jump_r = pygame.Rect(254, 13, 42, 49)
 display_surface.blit(background, (0,0))
 display_surface.blit(mario, (390, 510), jump_r)
 pygame.display.flip()

Surface Transforms

• pygame.transform module has methods to
manipulate a surface

• You can rotate / scale / chop / greyscale /

• For example:
pygame.transform.rotate(source_surface, angle) -> Surface

What did you learn today?

• Games are a part of human nature

• No surprise that humans put them on a
computer

• Game architectures are important

• For this class, always watch out for the game
loop

What did you learn today?

• Pygame engine is a library with lots of useful
routines

• lines, colors, circles, images, ...

• events

• surfaces

